Since the early 1990s, earlier diagnosis and improved treatment options have caused a steady decline in the prostate cancer mortality rate. Consequently, many of the 186,000 men in the US who will be diagnosed with prostate cancer in 2008 may live for many years with the disease and any long-term treatment-related adverse effects (AEs). Androgen-deprivation therapy (ADT) has become an accepted standard of care for prostate cancer treatment and its use is recommended in various stages of the disease. However, ADT is not without AEs, some of which may have long-term consequences. Of particular concern is the increased risk for fracture associated with ADT, especially in patients treated for many years. Clinicians who treat prostate cancer patients should be aware of the potential AEs associated with ADT and of strategies for preventing and/or treating them. This article reviews the prevalence and consequences of bone loss and fractures in men with prostate cancer and without bone metastases receiving ADT, and discusses prevention and treatment strategies.

Adverse Effects Associated with Androgen-deprivation Therapy

Non-skeletal Adverse Effects

ADT-treated patients commonly experience a range of AEs, including sexual dysfunction, hot flashes, anemia, metabolic syndrome, body composition changes, fatigue, and cognitive and mood changes. Although the focus of this article is skeletal-related AEs, a brief discussion about the increased risk for cardiovascular disease (CVD) in patients receiving ADT is warranted to increase awareness of this potential long-term AE. ADT-associated AEs that can increase the risk for CVD include metabolic syndrome and body composition changes. Metabolic syndrome is diagnosed when three or more of the following are present: abdominal obesity, hypertension, hyperglycemia, low levels of high-density lipoprotein cholesterol, or elevated blood pressure. Low testosterone levels are predictive of the development of metabolic syndrome in men. Results of a recent cross-sectional study showed that 55% of prostate cancer patients receiving ADT for at least one year developed metabolic syndrome compared with 22% of age-matched eugonadal men not receiving ADT. The presence of metabolic syndrome in prostate cancer patients increases the risk for insulin resistance, diabetes mellitus, CVD, and death. Changes in body composition such as an increased proportion of body fat and/or weight gain are often observed in men receiving ADT, and also contribute to the risk for CVD.

Compared with healthy controls, Chen and colleagues found that men receiving ADT for one to five years were 5.5 times more likely to become obese (body mass index [BMI] ≥30kg/m²). Prostate cancer patients are more likely to die from CVD than from prostate cancer itself, so clinicians should be aware of the increased CVD risk in all prostate cancer patients, especially those receiving ADT, and should monitor patients for early signs of CVD. Furthermore, before administering ADT to men with early-stage disease who are likely to receive long-term therapy (>1 year), clinicians must consider the risk for ADT-associated CVD, especially for men already at increased risk for CVD-related mortality.

Skeletal Adverse Effects

Bone loss is the most studied ADT-associated AE. Results of multiple studies have shown that bone mineral density (BMD) of the femoral neck, lumbar spine, and total hip decreases by up to 4.6% annually in prostate cancer patients without bone metastases who receive ADT, a rate that is four to eight times higher than the normal bone loss rate (0.5–1% per year) observed in otherwise healthy aging men. As bone loss increases the probability of fracture, prostate cancer patients who receive ADT are at an increased risk for fracture and related morbidity and mortality. Indeed, men with prostate cancer and no bone metastases...
Table 1: Types of Androgen-deprivation Therapy and Corresponding Effects on Bone in Men with Prostate Cancer and No Bone Metastases

<table>
<thead>
<tr>
<th>Type of ADT</th>
<th>Effect on Bone</th>
<th>Mechanism of Bone Effect</th>
</tr>
</thead>
</table>
| Orchiectomy
diabetes (± an antiandrogen) | Decrease in FN BMD during first year of therapy: -2.4; -7.6 decrease observed in second year | Testosterone-deficiency-induced decrease in osteoblasts and estrogen-deficiency-induced increase in osteoclast and decrease in osteoblast activity |
| GnRH agonist (± an antiandrogen) | LS: -1.9 to -4.6; TH: -1.9 to -2.8; FN: -0.1 to -3.9 | Testosterone-deficiency-induced decrease in osteoblasts and estrogen-deficiency-induced increase in osteoclast and decrease in osteoblast activity by downregulating GnRH receptors |
| Antiandrogen monotherapy (± an antiandrogen) | NTX, BSAP; osteocalcin levels similar to those observed in hormone-naive patients | Selectively inhibits androgen receptors; increases serum testosterone and estradiol concentrations |
| GnRH antagonist (± an antiandrogen) | Studies are lacking; however, effects on bone expected to be similar to those observed with GnRH agonists (studies are warranted) | Testosterone-deficiency-induced decrease in osteoblasts and estrogen-deficiency-induced increase in osteoclast and decrease in osteoblast activity by directly inhibiting GnRH receptors |
| GnRH agonist ± antiandrogen | LS: -2.0 to -2.7; TH: -2.1 to -2.8; FN: -2.1 | GnRH agonist: testosterone-deficiency-induced decrease in osteoblasts and estrogen-deficiency-induced increase in osteoclast and decrease in osteoblast activity by downregulating GnRH receptors |
| Estrogen (± an antiandrogen) | Orc vs estrogen: decrease BMD with orch, but not estrogen; DES versus GnRH versus orch: increased uNTX levels with GnRH and orch, but not DES | Maintains estrogen-induced bone resorption |
| Ketoconazole | NR | Inhibits cytochrome P450 enzymes involved in the synthesis of precursors to testosterone |
| Intermittent ADT + antiandrogen | LS: -4.5; TH: -2.5; FN: NR | Testosterone-deficiency-induced decrease in osteoblasts and estrogen-deficiency-induced increase in osteoclast and decrease in osteoblast activity by downregulating GnRH receptors |

ADT = androgen-deprivation therapy; BMD = bone mineral density; BSAP = bone-specific alkaline phosphatase; DES = diethylstilbestrol; FN = femoral neck; GnRH = gonadotropin-releasing hormone; LS = lumbar spine; NR = not reported; NTX = cross-linked N-telopeptide; orch = orchiectomy; TH = total hip; uNTX = urinary cross-linked N-telopeptide; a = not reported in Israeli 2007.

Bone remodeling is dependent on a balance of osteoblasts (bone formation cells) and osteoclasts (bone resorption cells); testosterone and estrogen play key roles in this balance. Testosterone stimulates osteoblast proliferation and inhibits osteoblast and osteoclast apoptosis; therefore, a deficiency in testosterone causes a decrease in the number of osteoblasts and osteoblast function. Estrogen is the primary hormone responsible for regulating bone resorption, and estrogen deficiencies receiving ADT are up to 37% more likely to experience a fracture than patients not receiving ADT; fracture-related hospitalizations are also more common in patients receiving ADT compared with patients not receiving ADT (4.9 versus 2.2%; p<0.001). The personal and economic consequences of fractures are significant. Studies evaluating the effects of ADT-related fractures on quality of life (QOL) are lacking, but results from studies that evaluate QOL in the general population indicate that QOL is substantially diminished in men who experience osteoporotic fractures. In one study, men who had experienced an osteoporotic hip fracture had decreased role-physical domain scores (a standard QOL measure) compared with men who had not experienced a fracture (-35.7; 95% confidence interval [CI] -60.4 to -11.1). While the study was not specific to the ADT-related fracture population, the results are likely relevant. Also, while no prospective studies have been developed to investigate the economic burden of ADT-related fractures in men with prostate cancer and no bone metastases, one recent retrospective claims database study evaluated healthcare system costs over a three-year period. In this study, ADT-treated prostate cancer patients who had experienced a fracture cost the healthcare system more than double ADT-naive prostate cancer patients who had not experienced a fracture (adjusted costs using a multivariate general linear model: $29,044 versus $68,647).
Ketoconazole inhibits cytochrome P450 enzyme-induced synthesis of testosterone precursors and is sometimes used as second-line therapy when disease progression occurs after conventional ADT. Although studies that evaluate the bone effects of ketoconazole in prostate cancer patients are lacking, bone loss has been observed in renal transplantation patients receiving ketoconazole during the first six months post-transplant. Whether these results are solely a result of ketoconazole's effect on calcitriol or due to its inhibition of the metabolism of corticosteroids that also have detrimental effects on bone is yet to be determined. Ongoing studies are evaluating the use of ketoconazole as ADT in patients who are unresponsive to conventional ADT, and ADT with GnRH antagonists is currently under investigation for use in prostate cancer patients who progress while receiving a GnRH agonist. If GnRH antagonists prove to prolong survival time (similar to GnRH agonists) and are found to be safe for use in these patients, studies evaluating bone effects of these agents will be needed; currently, GnRH antagonists are reserved for palliative therapy in patients with advanced symptomatic disease who are not candidates for GnRH agonists or refuse orchiectomy.

Maintaining Bone Health and Integrity During Androgen-deprivation Therapy

Various factors, including baseline BMI <25kg/m², hyperparathyroidism, hyperparathyroidism, liver disease, and calcium or vitamin D malabsorption/deficiencies, place prostate cancer patients at risk for bone loss even before ADT is initiated. Although studies to date have not been designed to show whether minimizing bone loss prevents fractures in prostate cancer patients without bone metastases, loss of BMD is a proven reliable surrogate marker for fracture risk. Therefore, all prostate cancer patients should be evaluated for underlying causes of bone loss, as well as counseled on the importance of lifestyle modifications (i.e. smoking cessation, minimizing alcohol consumption, routine weight-bearing exercise) and daily calcium (500–1,500mg) and vitamin D (400–800IU) supplementation to help prevent bone loss. Clinicians should consider pharmaceutical intervention (bisphosphonate therapy, estrogen, selective estrogen receptor modulators [SERMs]) for patients at greatest risk for bone loss, especially those receiving ADT. Furthermore, national guidelines now recommend that all patients receive a baseline BMD scan before beginning ADT. Routine follow-up BMD scans (every six to 12 months) should also be considered in patients receiving ADT.

Bisphosphonates

Bisphosphonates inhibit osteoclast activity. Both oral and intravenous (IV) formulations have demonstrated efficacy in preventing and, in the case of zoledronic acid, reversing bone loss (see Table 2). Intravenous bisphosphonate formulations are the most studied; however, recent results suggest that oral alendronate and risedronate maintain or significantly increase BMD in patients receiving ADT (see Table 2). Both of the IV bisphosphonates—pamidronate and zoledronic acid—have demonstrated efficacy in preventing bone loss in men with prostate cancer and no bone metastases receiving ADT (see Table 2).

Both of the intravenous bisphosphonates—pamidronate and zoledronic acid—have demonstrated efficacy in preventing bone loss in men with prostate cancer and no bone metastases receiving androgen-deprivation therapy.
appear to play a larger role in the AEs of ADT than testosterone deficiencies. Estrogen deficiencies cause osteoclast activation, decrease osteoclast apoptosis, and possibly decrease osteoblast formation, proliferation, and function. Ultimately, the net result of this imbalance is bone loss. Although the greatest degree of bone loss tends to occur during the first year of ADT, the prevalence of osteopenia/osteoporosis appears to increase with prolonged duration of ADT.

Results of one study found that after only two years of GnRH agonist (± bicalutamide) therapy, approximately 40% of bone-metastases-free prostate cancer patients developed osteoporosis; this rate doubled to approximately 80% after 10 years of therapy, and no patients had a normal BMD beyond 10 years.

Fracture risk also appears to increase with the duration of ADT; however, studies evaluating the long-term incidence in patients without bone metastases are needed.

Little is known about the extent to which other forms of ADT such as estrogen and antiandrogen monotherapy, intermittent GnRH agonists (± antiandrogen), GnRH antagonists, and ketoconazole affect bone health. However, results of studies indicate that some of the less conventional modalities may have less of a negative impact on BMD, and some may actually prevent bone loss (see Table 1).

Table 2: Pharmaceutical Interventions for the Prevention of Bone Loss in Men with Prostate Cancer and No Bone Metastases Receiving Conventional Androgen-deprivation Therapy

<table>
<thead>
<tr>
<th>Drug</th>
<th>Duration of Anti-bone-loss Therapy</th>
<th>Lumbar Spine</th>
<th>Total Hip</th>
<th>Femoral Neck</th>
<th>Reference(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alendronate 70mg/wk PO versus placebo</td>
<td>1 year</td>
<td>3.7</td>
<td>0.7</td>
<td>1.6</td>
<td>Greenspan, 2007, Greenspan, 2008</td>
</tr>
<tr>
<td>Risedronate 2.5mg/day PO</td>
<td>6 months</td>
<td>4.9%</td>
<td>NR</td>
<td>No change</td>
<td>Ishizaka, 2007</td>
</tr>
<tr>
<td>Pamidronate 60mg IV q 12 weeks versus control group</td>
<td>48 weeks</td>
<td>No change</td>
<td>No change</td>
<td>No change</td>
<td>Smith, 2001</td>
</tr>
<tr>
<td>Zoledronic acid 4mg IV q 3 months versus placebo</td>
<td>48 weeks–1 year</td>
<td>4.6–5.6</td>
<td>1.1–1.6</td>
<td>1.2–1.3 (NR in Israeli)</td>
<td>Smith, 2003, Ryan, 2006, Isreali, 2007</td>
</tr>
<tr>
<td>Zoledronic acid 4mg IV x 1 dose versus placebo</td>
<td>1 year</td>
<td>4</td>
<td>0.7</td>
<td>2</td>
<td>Michaelson, 2007</td>
</tr>
<tr>
<td>Estrogen versus orchiectomy</td>
<td>1 year</td>
<td>NR</td>
<td>NR</td>
<td>-1.2%</td>
<td>Eriksson, 1995</td>
</tr>
<tr>
<td>Raloxifene 60mg/day PO versus control group</td>
<td>1 year</td>
<td>1</td>
<td>1.1</td>
<td>0.3</td>
<td>Smith, 2004</td>
</tr>
<tr>
<td>Toremifene 80mg/day PO versus placebo</td>
<td>1 year</td>
<td>1.6</td>
<td>0.7</td>
<td>0.2</td>
<td>Smith, 2008</td>
</tr>
</tbody>
</table>

ADT = androgen-deprivation therapy, BMD = bone mineral density; NR = not reported. a = ADT consisted of GnRH agonist, GnRH agonist ± antiandrogen, estrogen, or orchiectomy; b = BMD measured by dual-energy X-ray absorptiometry; c = p value provided for between-group comparison; d = polyestradiol phosphate 160mg intramuscularly q four weeks x three months then 80mg q four weeks thereafter and ethinyl estradiol 1mg per oral (po) once-daily (qd) x two weeks followed by 0.15mg po qd either concomitantly or after three months of polyestradiol phosphate intramuscular injections.
importance of good oral hygiene, and the patient should receive a dental
treatment before bisphosphonate initiation.

Estrogens and Selective Estrogen Receptor Modulators

Both estrogen and SERMs (raloxifene and tamoxifen) have demonstrated
efficacy in preventing bone turnover or loss in prostate cancer patients
without bone metastases (see Table 2).1,2,3,7 Estrogen has also been
shown to prevent increases in biochemical markers of bone turnover in
these patients relative to patients receiving conventional ADT and no
estrogen.4,5 Due to its positive effects on bone resorption, a resurgence of
estrogen use in the treatment of prostate cancer has been observed.
However, because oral estrogen has shown cardiovascular and
thromboembolic toxicities in prostate cancer patients, more studies
evaluating the efficacy and safety of other estrogen formulations (e.g.
transdermal) are warranted. SERMs mimic the effects of endogenous
estrogen on bone resorption by selectively binding to estrogen
receptors.8 Results of recent studies have shown that both raloxifene and
toremifene increase BMD and prevent bone loss in men receiving ADT
(see Table 2).9,10 Whether estrogen therapy or SERMs prevent fractures in
prostate cancer patients, as has been observed in post-menopausal
women, is unknown; however, an ongoing study is evaluating
toremifene’s effects on fracture rate in this population.11

Conclusions

Bone loss and fractures in prostate cancer patients are significant AEs of
ADT. Lifestyle changes, calcium/vitamin D intake, and bisphosphonate
therapy are currently recommended strategies for preventing ADT-related
bone loss, and should be part of the overall treatment plan in men with
prostate cancer receiving ADT. Further studies are under way to evaluate
SERMs and other therapies for preventing bone loss in these patients.

Acknowledgments

The author thanks Stephanie Butler and Lisa Holle, who assisted
with manuscript writing and editorial services, respectively, and
Novartis Pharmaceuticals Corporation, who sponsored the development
of this article.

References

1. Higano CS, Understanding treatments for bone loss and bone
masses in patients with prostate cancer: a practical review and
3. National Comprehensive Cancer Network, NCCN Clinical Practice
Guidelines in Oncology: Prostate Cancer V1, 2008. Available at:
gonadotropin agonist and fracture risk: a claims-based study of
5. Smith MR, Boyce SP, Moyneur E, et al., Risk of clinical fractures
after gonadotropin-releasing hormone agonist therapy for prostate
7. Higano CS, Androgen-deprivation-therapy-induced fractures in
men with metastatic prostate cancer: what do we really
in men with prostate cancer undergoing long-term androgen-
derived therapy, J Clin Oncol, 2006;24:3979–93.
9. Chen Z, Maricic M, Nguyen P, et al., Low bone density and high
percentage of body fat among men who were treated with
androgen deprivation therapy for prostate carcinoma, Cancer, 2002;95:2136–44.
trial of annual zoledronic acid to prevent gonadotropin-releasing
hormone agonist-induced bone loss in men with prostate cancer,
11. Lu-Yao G, Stulke TA, Yao SL, Changing patterns in competing
causes of death in men with prostate cancer: a population based
study, J Urol, 2004;171:2285–90.
patients with prostate cancer without bone metastases treated with
intermittent androgen suppression, Urolgy, 2004;64:1182–6.
initiation of androgen deprivation therapy in patients with
14. Maillieret JF, Sibilia J, Michel F, et al., Bone mineral density in
men treated with synthetic gonadotropin-releasing hormone
to prevent bone loss during androgen-deprivation therapy for
trial of zoledronic acid to prevent bone loss in men receiving
androgen deprivation therapy for non-metastatic prostate cancer,
17. Ismaili RS, Rosenberg SI, Saltzstein DR, et al., The effect of
zoledronic acid on bone mineral density in patients undergoing
androgen-deprivation therapy, Clin Genitourin Cancer, 2007;5:
271–7.
Piemontese (GOUP), Rete Oncologia Piemontese, Changes in bone mineral density, lean body mass and fat content as
defined by dual energy x-ray absorptiometry in patients with
prostate cancer without apparent bone metastases given
during the first year of androgen deprivation therapy increases
bone mineral density in patients with prostate cancer, J Urol, 2006;
176:972–8.
20. Mittan D, Lee S, Miller E, et al., Bone loss following hypogonadism
in men with prostate cancer treated with GnRH analogs, J Clin
Endocrinol Metab, 2002;87:8566–61.
once-weekly oral alendronate on bone loss in men receiving androgen
association with bone mineral density in elderly men and women:
fractures on health-related quality of life in community-dwelling men
24. Krupski TL, Foley KA, Baserr O, et al., Healthcare cost associated
with prostate cancer, androgen deprivation therapy and bone
25. Eriksson S, Eriksson A, Stege R, Carlstrom K, Bone mineral density
in patients with prostate cancer treated with orchidectomy and
with estrogens, Calcif Tissue Int, 1995;97:9–7.
26. Daniel HJ, Durn SR, Ferguson DW, et al., Progressive osteoporosis
during androgen deprivation therapy for prostate cancer, J Urol, 2006;
27. Riggs BL, Khosla S, Melton LJ III, Sex steroids and the construction
acid for treatment of postmenopausal osteoporosis, JAMA, 2004;
293:342–34.
continuation, withdrawal, or delay of androgen treatment in men
with prostate cancer undergoing androgen-deprivation therapy,
30. Ishizaka K, Machirka S, Kobayasi S, et al., Prevention of
vertebral fracture risk in postmenopausal women with osteoporosis
treated with raloxifene: results from a three-year randomized
31. Oefelein MG, Resnick MI, The impact of osteoporosis in men
32. Smith MR, Selective estrogen receptor modulators to prevent
treatment-related osteoporosis, Rev Urol, 2005;Suppl; 3:530–35.
during long-term androgen deprivation therapy in patients with
34. Berruti A, Dogliotti L, Terrone C, et al., for the Gruppo Oncologico
Piemontese (GOUP), Rete Oncologia Piemontese, Osteoporosis in men
receiving androgen deprivation therapy for prostate cancer: a practical