Weighing Bone-targeted Treatment Options for Patients with Solid Tumours and Skeletal Complications from Metastatic Disease

Lesley Fallowfield,1 Roger von Moos,2 Luis Costa,3 Alison Stopeck,4 Mark Clemons,1
Noel Clarke,5 Ada Braun6 and Karen Chung8

1. Director and Professor, Sussex Health Outcomes Research & Education in Cancer (SHORE-C), University of Sussex, Brighton, UK; 2. Medical Director and Professor, Department of Oncology, Kantonsspital Graubünden, Chur, Switzerland; 3. Director and Associate Professor, Arizona Hemophilia and Thrombosis Center, The University of Arizona Cancer Center, Tucson, Arizona, US; 4. Associate Professor, Division of Medical Oncology, The Ottawa Hospital Cancer Centre, Ottawa, Ontario, Canada; 6. Professor, Urological Oncology, University of Manchester, Manchester, UK; 7. Executive Medical Director, Global Development, Amgen Inc., Thousand Oaks, California, US; 8. Director, Global Health Economics, Amgen Inc., Thousand Oaks, California, US.

Abstract

The complications of metastatic bone disease (MBD) in advanced cancer, especially skeletal-related events (SREs), are a significant cause of morbidity that can seriously impair the quality of patients’ lives. Treatments that prevent SREs reduce or delay the onset of pain and preserve function and activities of daily living are central to good patient care. In this article, we discuss results from clinical trials that show the relative benefits and harms of different bone-targeted agents, which may be given orally, intravenously or subcutaneously. These data, when considered alongside various patient characteristics, can provide oncologists with better opportunities to individualise care. Optimal management with treatments that enhance efficacy and adherence mean that clinicians can improve the outlook for their patients with MBD, who may consequently experience fewer SREs and less pain and enjoy a better overall quality of life.

Keywords

Metastatic bone disease, bone metastases, advanced cancer, bisphosphonates, denosumab, RANK ligand, osteoclast, bone resorption, clinical trials

Disclosure: Lesley Fallowfield has served as a consultant for and has received speaker fees from Amgen as well as unrestricted research grants from Novartis. Roger von Moos has served as a consultant for Amgen, Novartis and Roche, and has received speaker fees and unrestricted research grants from Amgen and Roche. Luis Costa has received honoraria from Novartis and Amgen, and speaker fees from Novartis and Amgen. Alison Stopeck has served as a consultant for Novartis and Amgen, and has received speaker fees from Amgen. Mark Clemons has received research funding from Novartis, speaker fees from Amgen, Novartis and Roche, and has served as a consultant for Amgen and Novartis. Noel Clarke has served as a consultant for and received speaker fees from Amgen, Astellas, AstaZeneca and Janssen. Ada Braun and Karen Chung are employed by Amgen.

Acknowledgement(s): Medical writing assistance was provided by Vidya S Beckman, who is an employee of Amgen Inc.

Received: 24 April 2012 Accepted: 23 July 2012 Citation: European Oncology & Haematology, 2012;8(3):148–55. DOI: 10.17925/EOH.2012.08.3.148

Correspondence: Lesley Fallowfield, Sussex Health Outcomes Research & Education in Cancer (SHORE-C), University of Sussex, Brighton BN1 9XQ, UK. E: L.J.Fallowfield@sussex.ac.uk

Approximately 70–80 % of patients with advanced prostate or breast cancer and 30–40 % of patients with advanced lung cancer and other solid tumours develop metastatic bone disease (MBD).1 The added burden to patients once cancer afflicts bone is significant. In addition to the reduced survival associated with bone metastases, systemic morbidity such as bone pain is common.1 Other complications directly related to metastatic bone destruction include: pathologic fracture, spinal cord compression, that can result in numbness or weakness, urinary or faecal incontinence or paralysis, and hypercalcaemia of malignancy.1 All these problems can have a deleterious impact on the quality of patients’ lives. Irradiation of the bone (e.g., for bone pain or fracture), surgery to the bone to prevent or treat fracture, pathologic fractures and spinal cord compression are conditions labelled collectively as skeletal-related events (SREs).2 While the term SRE is commonly used to quantify the effects of MBD, additional symptoms from disease in the skeleton, such as pain and impaired mobility, can occur irrespective of the presence of SREs. Indeed, prognosis is diminished for patients with MBD who develop SREs compared with those who do not.14 Furthermore, the overall cost of the treatment of SREs places a significant burden on healthcare systems.17 In addition to appropriate systemic antitumour therapy to palliate symptoms and prolong life-expectancy, delaying or preventing SREs with bone-targeted agents is important. A key approach is the use of drugs to reduce osteoclast-mediated bone destruction (see Table 1).11

A number of agents classified as bisphosphonates bind to bone and are toxic to osteoclasts, reducing their bone-resorbing effects and thereby decreasing SREs. Bisphosphonates vary in their mode of administration, but also in their degree of potency, toxicity and effectiveness according to tumour type. For example, clodronate is administered orally, ibandronate is available in both oral and intravenous formulations, and pamidronate and zoledronic acid are both administered intravenously. The amino-bisphosphonates
(ibandronate, pamidronate, zoledronic acid) are considered more potent than earlier generation drugs such as clodronate and have different side-effect profiles. While approvals by cancer type are country- and region-specific, ibandronate, clodronate and pamidronate have demonstrated efficacy in patients with metastatic breast cancer and bone lesions from multiple myeloma. Zoledronic acid is approved to prevent SREs (including tumour-induced hypercalcaemia) in patients with advanced malignancies involving bone.

The newest bone-targeted therapy, denosumab, is a fully human monoclonal antibody with high affinity and specificity for the signalling protein RANK ligand (RANKL). Denosumab prevents the interaction of RANKL with its RANK-binding site on the surface of osteoclasts. This reduces osteoclast formation, function and survival, inhibiting osteoclast-mediated bone destruction dramatically.12,13 Unlike bisphosphonates, denosumab is administered by subcutaneous injection and has proven more effective than zoledronic acid in preventing SREs in patients with bone metastases from solid tumours.14,15 Denosumab is not indicated in Europe for the prevention of SREs in patients with multiple myeloma.

In this paper, we review the currently available treatments and their efficacy in relation to reducing skeletal complications from MBD. We also consider comparative treatment characteristics that may help to maintain, rather than impede, a good quality of life, and summarise the relative advantages and disadvantages of different treatments based on patient-centred attributes. In order to provide focused and in-depth discussion, this article addresses only MBD from solid tumours, not from multiple myeloma.

Considering Efficacy and More

As more cancer treatments now prolong both progression-free and overall survival, there is an increasing need to ensure that patients’ health-related quality of life (HRQoL) is optimally maintained as well.16,17 When choosing between treatment possibilities for advanced cancer, patient preferences should be taken into account. Clinicians and patients can together evaluate the advantages and disadvantages of the different options based on factors beyond treatment efficacy. Clinicians tend to focus more on disease-related factors (such as previous therapies and response, tumour burden and the need for rapid disease or symptom control), whereas patients tend to place greater emphasis on HRQoL (including burden of treatment, treatment side effects and impact on their lifestyle and family) and on the tangible and intangible costs of treatment.18,19 These more psychosocial issues are often difficult to quantify, but their consideration can provide valuable guidance when clinicians discuss the various treatment options available with individual patients. HRQoL-related factors can not only aid optimal decision-making, but can also improve physician–patient communication, which may lead to better outcomes for some cancer patients.19

The issues beyond efficacy that merit discussion include details about the mode and frequency of administration, availability of therapy, the relative acceptability of side effects and, in some healthcare systems, funding for the agent. Other factors important to patients include their own out-of-pocket costs — incurred through travel and time for extra testing or monitoring — and the added financial burden that might be sustained by caregivers. Table 2 summarises the various features that may influence adherence to and effectiveness of treatment. It is divided into three parts.
Supportive Oncology

• treatment characteristics;
• efficacy (and comparative efficacy when available); and
• notable side effects and their management.

Treatment Characteristics
In the context of treating advanced cancer, factors such as ease of medication use and accessibility of treatment may often be considered as secondary or tertiary matters. However, these can be of primary concern to patients, and discussing them may help guide treatment choices. Patients who cannot easily travel to treatment centres on a regular basis, whether due to physical distance, poor health or lack of someone to transport them, may prefer oral treatment. Those who have problems with intravenous access, whether from previous extensive intravenous treatment, anatomical limitations or complications of an intravenous catheter (such as infection), may well favour oral or subcutaneous administration. Many view the oral route as a more convenient mode of administration, but, as cancer affects older people, co-morbidities in these patients demand polypharmacy. Patients who need to ingest large quantities of oral medications, including as part of their ongoing cancer treatment, may not find the administration of zoledronic acid is typically longer than 15 minutes, frequent dosing regimens.26,27

Instead of every three to four weeks – is being explored to reduce costs as attractive compared with daily administration of oral drugs.22 Not all intravenous formulations of bone-targeted agents are the same and considering their differences may influence the choice of treatment. The shorter infusion time of 15 minutes minimum with zoledronic acid and ibandronate (for patients with creatinine clearance [CrCl] >50 ml/min) has been noted as an advantage over pamidronate, which is infused over two hours minimum.21 In practice, studies find that the administration of zoledronic acid is typically longer than 15 minutes, as the need for renal monitoring, ancillary pre-infusion tasks and patient hydration place a greater time burden on patients and clinicians alike.23–25 A clinic-based study in the US reported mean zoledronic acid patient hydration time as 17 minutes, which is infused over two hours minimum.21 In practice, studies find that the administration of zoledronic acid is typically longer than 15 minutes, as the need for renal monitoring, ancillary pre-infusion tasks and patient hydration place a greater time burden on patients and clinicians alike.23–25 A clinic-based study in the US reported mean zoledronic acid patient hydration time as 17 minutes.

Denosumab shows a bioavailability of >60 %.7 It is not deposited in bone and its effects are reversible.46 As with all monoclonal antibodies, denosumab is likely eliminated by the reticuloendothelial system,41 with no effect on renal function, in contrast to bisphosphonates, which are excreted by the kidneys and are nephrotoxic.42 Head-to-head comparative trials of denosumab and zoledronic acid showed that denosumab is significantly more effective at reducing the rate of SREs than zoledronic acid despite its higher acquisition costs.43–46 Health technology assessments generally do not take into account the additional hidden costs to patients associated with the illness and its treatment, including lost time at work for both patients and care-givers; these additional costs may weigh in favour of denosumab due to its subcutaneous mode of administration and increased efficacy.

Efficacy
The efficacy of bisphosphonates in delaying cancer-related skeletal complications is influenced by the potency of the bisphosphonate, its bioavailability and patient adherence to treatment. The order from lowest to highest potency is as follows: clodronate, pamidronate, ibandronate and zoledronic acid.35 Oral formulations are available for clodronate and ibandronate, but their bioavailability is much less than that of bisphosphonates administered intravenously, particularly if they are not taken according to the strict administration instructions.36–38 All bisphosphonates have a long half-life because they accumulate within bone, where they are incorporated integrally into the bone structure. Despite this long half-life, metabolic activity is a function of the free levels of the drug; hence, the activity of this class of agents in MBD is shortened by the local resorptive drive of the tumour. Also, the risk of skeletal complications after zoledronic acid treatment is a function of persistence of use.38

Denosumab versus zoledronic acid (time to first SRE 19.4 months) (hazard ratio 0.82, 95 % confidence interval [CI] 0.75–0.89; p<0.0001); denosumab versus zoledronic acid (time to first SRE 27.7 months) (hazard ratio 0.82, 95 % confidence interval [CI] 0.75–0.89; p<0.0001); denosumab versus zoledronic acid (time to first SRE 19.4 months) (hazard ratio 0.82, 95 % confidence interval [CI] 0.75–0.89; p<0.0001); denosumab versus zoledronic acid (time to first SRE 19.4 months) (hazard ratio 0.82, 95 % confidence interval [CI] 0.75–0.89; p<0.0001); denosumab versus zoledronic acid (time to first SRE 19.4 months) (hazard ratio 0.82, 95 % confidence interval [CI] 0.75–0.89; p<0.0001).
also reduced the risk of any on-study SRE by 19 % compared with zoledronic acid (relative risk 0.81, 95 % CI 0.74–0.88; p<0.0001).46

The comparative effectiveness of denosumab and zoledronic acid has also been assessed using a number needed to treat (NNT) analysis. This method describes effectiveness in terms of people who may be affected, rather than a percentage risk reduction. A lower NNT represents a more beneficial treatment outcome. NNT analyses between denosumab and zoledronic acid demonstrated a greater treatment benefit with denosumab across tumour types: treatment of seven patients with denosumab would prevent an additional SRE per year in patients with breast cancer metastatic to bone27 and in patients with other advanced solid tumours,72 while treatment of five patients with denosumab would prevent an additional SRE per year in patients with castration-resistant prostate cancer metastatic to bone.28

Patient-reported Outcomes
The impact that different bone-targeted therapies in MBD patients with advanced cancer have on pain is important. Fear and other psychosocial dimensions of pain should not be overlooked.49–51 Results from a plethora of studies investigating the effects of bisphosphonates on bone pain across cancer sites have been summarised in systematic reviews.50–52 The balance of evidence indicates that oral clodronate has little effect on bone pain in metastatic breast cancer, whereas both oral and intravenous ibandronate have produced significant reductions compared with placebo.50 Intravenous pamidronate improved pain scores compared with placebo and51 also improved pain scores compared with oral clodronate over three months of treatment in a small comparative trial in breast cancer.44

Zoledronic acid, compared with placebo, has been found to attenuate pain worsening in metastatic prostate cancer45 and reduce pain in patients with breast cancer.25 In the head-to-head trials of denosumab and zoledronic acid in breast cancer, prostate cancer and other solid tumours, denosumab was more effective at delaying the onset of significant pain, particularly in patients with no or mild pain at initiation of treatment. In these patients, denosumab reduced the risk of pain worsening to moderate or severe compared with zoledronic acid by 22 % in breast cancer (p=0.0024), 11 % in prostate cancer (p=0.14) and 19 % in other solid tumours (p=0.050), with median delays in pain worsening of one to four months depending on tumour type.46 Denosumab and zoledronic acid were similarly effective in palliating pain.

Some bone-targeted therapies have been found to influence analgesic use for pain relief. A German clinic-based study of breast cancer patients found that, with ibandronate therapy, more patients ceased taking analgesics and fewer patients required more potent analgesia at the end of the study than at enrollment.52 Analyses of data pooled from oral and intravenous clodronate trials in solid tumours found an increased proportion of patients requiring less analgesia at four and 12 weeks compared with patients receiving placebo.53 The comparative denosumab and zoledronic acid trials across advanced cancers collectively showed that fewer denosumab-treated patients reported shifts from no or low analgesic use at baseline to strong opioid-level analgesic use by study end.54

The direct effects of bone-targeted agents on general measures of patients’ HRQoL can be challenging to quantify, but some improvement in overall HRQoL has been observed in the breast cancer setting. Statistically significant improvements in overall HRQoL have been reported with both oral and intravenous ibandronate, but not with other bisphosphonates.51 A greater proportion of denosumab-treated patients compared with zoledronic acid-treated patients reported clinically meaningful improvements in HRQoL in the comparative trial in breast cancer.52

Notable Side Effects
The most troubling adverse effects with oral bisphosphonate regimens are oesophagitis and gastrointestinal irritation, which can negatively impact treatment adherence.52 Rates of gastrointestinal disorders are estimated to be 57 % with oral clodronate versus 45 % with placebo54–56 and 15 % with oral ibandronate versus 8 % with placebo.57 The most common adverse events with intravenous bisphosphonates are acute phase reactions, such as fever, chills and muscle aches, after the initial infusion.58 While fever can occur in over 50 % of patients after their first dose, overall symptoms are temporary, generally mild and managed effectively with anti-inflammatory drugs. However, patients who experience severe acute phase reactions after receiving their first bisphosphonate dose may be inclined to interrupt treatment.59

The potential for increased nephrotoxicity is of concern with both oral and intravenous bisphosphonates, as these agents are eliminated via the kidneys and, when used in higher doses or infused rapidly, can induce renal impairment in patients with previously normal renal function.60 The type of bisphosphonate and differences in half-life, protein binding capacity, dosing, schedule of administration and duration of infusion affect the occurrence and severity of renal toxicity. For instance, the long half-life of zoledronic acid in renal tissue of 150–200 days61 may contribute to greater cumulative toxicity compared with ibandronate, which has a half-life in renal tissue of 24 days in animal models.62 Patients require monitoring of serum creatinine levels before administration of each dose, and intravenous bisphosphonate dosing and/or infusion rate may require adjustments based on CrCl.63–65 Bisphosphonates have to be withheld until serum creatinine levels recover sufficiently.66 Bisphosphonates are not recommended for patients with severe renal impairment (CrCl <30 ml/minute),67 with the exception of ibandronate, which, per the label, can be administered at a reduced dose in patients with CrCl <30 ml/minute.68

Denosumab, which is not associated with renal toxicity, does not require renal monitoring or dose adjustment, nor does it have to be withheld from patients with renal dysfunction.69 As expected for agents that inhibit bone resorption and the associated calcium release from bone, decreases in serum calcium levels can occur with both denosumab and zoledronic acid. In the comparative trials of denosumab and zoledronic acid, the incidence of hypocalcaemia was generally low, but more frequent with denosumab than with zoledronic acid across solid tumours (9.5 % versus 4.8 %, respectively, in integrated analyses in patients with solid tumours only).70 In the post-marketing setting, cases of severe hypocalcaemia (including rare symptomatic cases) have been reported in patients receiving zoledronic acid27 or denosumab,71 and rare fatal cases of severe hypocalcaemia have been reported in patients receiving denosumab who had advanced metastatic cancer and other concurrent medical conditions,21 the patients receiving
Table 2: Cross-therapy Assessment of Bone-targeted Treatments by Characteristics, Efficacy and Notable Side Effects

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Characteristics</th>
<th>Breast Cancer Efficacy</th>
<th>Other Considerations</th>
<th>Treatment Efficacy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clodronate</td>
<td>Oral Administration</td>
<td>Oral Frequency</td>
<td>Recommended Duration of Treatment</td>
<td>Reduced overall skeletal morbidity* by 26–27 % versus placebo**<sup>18</sup></td>
</tr>
<tr>
<td>Ibandronate</td>
<td>Intravenous</td>
<td>Once every 3–4 weeks</td>
<td>Treatment Characteristics</td>
<td>Reduced risk of new bone events** by 38 % versus placebo<sup>18</sup></td>
</tr>
<tr>
<td>Ibandronate</td>
<td>Intravenous Subcutaneous</td>
<td>Usually required</td>
<td>Travel to Clinic</td>
<td>Reduced risk of new bone events** by 38 % versus placebo<sup>18</sup></td>
</tr>
<tr>
<td>Pamidronate</td>
<td>Intravenous</td>
<td>Usually required</td>
<td>Administration</td>
<td>Proportion of women developing skeletal events (excluding HCM) was 51 % with 90 mg pamidronate and 64 % with placebo; median time to first skeletal event was 12.7 months with pamidronate and 7 months with placebo<sup>18</sup></td>
</tr>
<tr>
<td>Zoledronic acid</td>
<td>Intravenous</td>
<td>Usually required</td>
<td>Other Considerations</td>
<td>Denosumab 120 mg reduced time to first SRE by 18 % and risk of total number of SREs by 23 % compared with ZA 4 mg<sup>18</sup></td>
</tr>
<tr>
<td>Denosumab</td>
<td>Subcutaneous</td>
<td>Not required</td>
<td>Pre-existing hypocalcaemia must be corrected prior to initiating therapy</td>
<td></td>
</tr>
</tbody>
</table>

*Clodronate 85 mg (Oral Formulation) | Ibandronate 74 mg (Intravenous Formulation) | Ibandronate 84 mg (Intravenous Formulation) | Pamidronate 83 mg | Zoledronic acid 73 mg | Denosumab 75 mg (Intravenous Formulation)
Table 2 Continued: Cross-therapy Assessment of Bone-targeted Treatments by Characteristics, Efficacy and Notable Side Effects

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Clodronate<sup>a</sup></th>
<th>Ibandronate<sup>b</sup> (Oral Formulation)</th>
<th>Ibandronate<sup>b</sup> (Intravenous Formulation)</th>
<th>Pamidronate<sup>c</sup></th>
<th>Zoledronic acid<sup>d</sup></th>
<th>Denosumab<sup>e</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Breast Cancer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment Efficacy</td>
<td>No significant difference in the proportion of women developing skeletal events (excluding HCM) with pamidronate 90 mg (45 %) and ZA 4 mg (43 %); in subgroup of patients with lytic lesions, ZA 4 mg significantly prolonged time to first skeletal event compared with pamidronate 90 mg (median 310 versus 174 days, respectively; p=0.013)<sup>l</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prostate Cancer</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>No difference in proportion of patients developing an SRE between pamidronate 90 mg and placebo<sup>o</sup></td>
<td>Denosumab 120 mg reduced risk of time to first SRE by 18 % and risk of total number of SREs by 18 % compared with ZA 4 mg<sup>t</sup></td>
<td></td>
</tr>
<tr>
<td>All Solid Tumours Combined</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td>Denosumab 120 mg reduced time to first SRE by 17 % and risk of total number of SREs by 18 % compared with ZA 4 mg<sup>t</sup></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Notable Treatment Side Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute Phase Reactions (Fever, Muscle Ache and Rigor)</td>
</tr>
<tr>
<td>Gastrointestinal Toxicity</td>
</tr>
<tr>
<td>Hypocalcaemia</td>
</tr>
<tr>
<td>Renal Toxicity</td>
</tr>
<tr>
<td>Osteonecrosis of the Jaw</td>
</tr>
</tbody>
</table>

* Skeletal morbidity defined as cumulative number of events (hypercalcaemia, course of radiation therapy to bone, fractures; ** Bone events included vertebral fractures, pathologic non-vertebral fractures and radiotherapy or surgery for bone complications. ASCO = American Society of Clinical Oncology; Clcr = creatinine clearance; HCM = hypercalcaemia of malignancy; NA = not applicable; IU = international unit; SRE = skeletal-related event; ZA = zoledronic acid.
Supportive Oncology

denosumab were also taking a variety of other concurrent medications, including antitumor therapies; it is not known if the concurrent conditions and therapies contributed to the hypocalcemia or the fatal outcomes in these patients.

Pre-existing hypocalcemia must be corrected prior to initiating bone-targeted therapy, and it is important that clinicians advise their patients to take calcium and vitamin D supplements during treatment. Patients with significant renal dysfunction (CRI <30 ml/min) or who are on active dialysis are at increased risk of hypocalcemia. Thus, when initiating bone-targeted therapy in these patients, it may be prudent to plan more frequent monitoring of calcium levels.

Osteonecrosis of the jaw (ONJ) occurs with very low frequency but can be a serious adverse event with both denosumab and intravenous bisphosphonates. Among 5,723 patients in the denosumab versus zoledronic acid comparative trials, where ONJ was independently adjudicated, ONJ occurred in 1.6% of patients overall (1.8% receiving denosumab and 1.3% receiving zoledronic acid; p=0.13); over half of these cases were treated conservatively. Symptomatic clinical events can include swelling and numbness, pain, infection or drainage in the jaw. Conservative management of ONJ is generally recommended using antibiotics, oral rinses and limited debridement.

Aggressive treatment by surgery and bone resection is only required in patients with severe manifestations of the condition. The most common risk factors leading to ONJ in patients receiving bisphosphonates or denosumab are pre-existing dental or gum disease and invasive dental procedures such as tooth extraction. Preventive dentistry is recommended prior to initiation of bone-targeted agents in patients with poor oral hygiene or dentition. Clinicians should proactively encourage good dental hygiene practices in their patients to manage ONJ severity or to reduce the risk of ONJ, as it can be preventable.

Although some tumour types, patient features and other considerations will dictate the bone-targeted treatments to be offered (for example, pamidronate is ineffective in prostate cancer), clinicians nevertheless still have large numbers of patients for whom there is a variety of available treatment options.

Discussion

Although the efficacy of bone-targeted therapies is a key factor in the choice of treatment, there are several factors beyond efficacy that are important, as discussed above; clinicians need to tailor the bone-targeted treatment to fit most appropriately with the clinical condition of the patient. All efficacious bone-targeted therapies carry risks of complications, including renal toxicity, ONJ, gastrointestinal irritation and hypocalcemia; some of these are predictable (e.g., ONJ is more likely in patients with poor oral hygiene or who are undergoing dental extractions) and some can be prevented. If the patient’s pre-existing renal function is impaired, or if the patient is receiving other treatments that increase the risk of renal toxicity, this might further influence the choice of bone-targeted treatment.

Although oral drugs are perceived as convenient, especially for patients who have difficulty travelling to the cancer centre or live in remote locations, they may be less effective than other options and complete treatment adherence cannot be assumed. Asking about concomitant medications and patients’ ability to swallow a large number of medications may quickly reveal that intravenous or subcutaneous formulations might be better than an oral one. Some clinicians may feel that, for certain individuals with characteristics that limit the use of bone-targeted drugs, other available therapies – e.g., radionuclides or focal radiotherapy – may be more appropriate to provide some palliation.

The actual cost of the drug and associated administration costs cannot be ignored. Some clinicians who practice in low-income countries, or in countries where access to novel therapies is determined by the thresholds permitted following a health technology assessment, may find it difficult to obtain access to the most efficacious or convenient drugs. Oral preparations are cheaper than intravenous formulations, but intravenous zoledronic acid is more effective than any of the other bisphosphonates given either orally or intravenously. The accumulating data from pivotal trials showing the superior efficacy of denosumab over zoledronic acid in solid tumours mean that this treatment option should be considered. Patients are increasingly better educated regarding their disease and will learn about treatment options from a variety of sources, including the Internet. Therefore, discussing all potentially available treatments is important to avoid patients’ mistrust of clinicians. Burden and costs to care-givers associated with different treatments also need attention. Repeated monthly visits to a doctor’s surgery or cancer centre for intravenous treatment and monitoring have financial consequences for families. Oral and subcutaneous formulations may circumvent the expenses and practical difficulties of travelling to the clinic; denosumab, for example, can be administered by a healthcare professional in the patient’s home.

Finally, the preservation of functionality and quality of life is central to the care of patients with MBD. With the various bone-targeted agents now available, oncologists have the opportunity to individualise and optimise the care of their patients. By choosing treatments that enhance efficacy and adherence, clinicians can improve the outcomes for their patients, who may consequently experience fewer serious SREs and less pain and enjoy a better overall quality of life.
Treatment Options for Metastatic Bone Disease in Solid Tumours

188. Rosen LS, Gorden DR, Dugan WJ, et al., Zoledronic acid is superior to pamidronate for the treatment of bone pain in breast cancer patients with at least one osteolytic lesion, Cancer 2004;101:36–43.