How to Find the Optimal Mobilisation Strategy – Impact, Challenges and Solutions

Patrick Wuchter1,2 and Kai Hübel3

1. Department of Medicine V, Heidelberg University, Heidelberg, Germany; 2. Institute of Transfusion Medicine and Immunology, German Red Cross Blood Donor Service Baden-Württemberg-Hessen, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany; 3. Clinic I of Internal Medicine, University of Cologne, Cologne, Germany

A utologous haematopoietic stem-cell transplantation (HSCT) is the standard treatment for a number of haematological malignancies. Achieving sufficient haematopoietic stem cell mobilisation is a prerequisite, but exactly how to define and achieve this goal remains a subject of debate. Key questions include which pharmacological agents to use, timing of treatments and mobilisation, and, in particular, target numbers of stem cells. Clinicians from Europe, North America and Asia compared their experiences and discussed these issues at a satellite workshop during the 3rd International Congress on Controversies in Stem Cell Transplantation and Cellular Therapies (COSTEM 2015). This review discusses the challenges of optimising leukapheresis in the context of these discussions. Although several studies suggest that the cell dose influences transplant outcomes in HSCT, other studies have not reached this conclusion. Recent data indicate that the graft composition also plays a role. More prospective study data are needed for a fuller understanding of engraftment outcomes using different mobilisation protocols.

Autologous haematopoietic stem-cell transplantation (HSCT) is widely employed in haematological malignancies including multiple myeloma (MM),1 Hodgkin and non-Hodgkin lymphoma (HL and NHL)2 and acute myeloid leukaemia (AML).3,4 High-dose chemotherapy is an effective treatment strategy in numerous malignant conditions, however, it requires the subsequent use of autologous HSCT in order to restore bone marrow function, mostly using HSCs from the patient’s peripheral blood.4 Rates of autologous HSCT have increased steadily during the past 2 decades.4,5 In 2014, more than 40,000 HSCT (57% autologous) were performed in Europe.13 The main indications for HSCT were leukaemias (33%; 4% autologous); lymphoid neoplasias (57%; 89% autologous); solid tumours; (4%; 97% autologous) and non-malignant disorders; (6%; 12% autologous).13 Recent trends in transplant activity include increased use of allogeneic HSCT for AML in first complete remission, myeloproliferative neoplasm (MPN) and aplastic anaemia with decreasing use in chronic lymphoctic leukaemia (CLL); and increased autologous HSCT for plasma cell disorders.14 The ability to improve patient outcomes with autologous HSCT is directly dependent, however, on successful mobilisation and collection of stem cells.

Various advances in HSCT over the past decade, including new stem cell mobilisation techniques, have led to the need to reassess strategies to optimise outcomes. In October 2015, clinicians from Europe, North America and Asia compared their experiences and discussed these issues at a Sanofi-sponsored satellite workshop at the 3rd International Congress on Controversies in Stem Cell Transplantation and Cellular Therapies (COSTEM 2015). This review aims to discuss the challenges of finding the optimal mobilisation strategy in the context of these discussions.

Key stages of haematopoietic stem-cell transplantation

The HSCT process can be summarised as follows: administration of mobilisation agents, mobilisation, collection by leukapheresis, preparation of product for storage, cryopreservation, administration of high-dose chemotherapy, stem cell transplantation, and engraftment and recovery.14 HSCs usually circulate in small numbers in peripheral blood, therefore, their mobilisation from bone marrow into peripheral blood following treatment with chemotherapy and/or cytokines is an essential part of HSCT, and is one of the major challenges of the process.15

Progenitor stem cells express the cell surface marker antigen CD34, which is used in clinical practice to determine the extent and efficiency of peripheral blood stem cell collection.16 The number of peripheral blood CD34+ cells is used to monitor the timing of leukapheresis for autologous transplantation.17 Before collection, the number of CD34+ cells should ideally exceed 10–20/µl in peripheral blood.18

Keywords

Autologous haematopoietic stem-cell transplantation, leukapheresis, stem cell mobilisation

Disclosure: Patrick Wuchter is an Advisory Board member and has received honoraria from Sanofi-Aventis. He is an Advisory Board member and has received travel grants from Hexal AG. Kai Hübel is an Advisory Board member and received honoraria from Sanofi-Aventis, Roche, Gilead, Teva, Hexal, Celgene and Amgen.

Open Access: This article is published under the Creative Commons Attribution Noncommercial License, which permits any non-commercial use, distribution, adaptation and reproduction provided the original author(s) and source are given appropriate credit.

Acknowledgments: Medical writing assistance was provided by Katrina Mountfort at Touch Medical Media, supported by Sanofi-Genzyme.

Received: 23 June 2016

Accepted: 25 August 2016

Citation: European Oncology & Haematology, 2016;12(2):87–92

Corresponding Authors: Patrick Wuchter, Institute of Transfusion Medicine and Immunology, German Red Cross Blood Donor Service Baden-Württemberg-Hessen, Medical Faculty Mannheim, Heidelberg University, Friedrich-Ebert-Str. 107, D-68167 Mannheim, Germany; E: Patrick.Wuchenermedma.uni-heidelberg.de. Kai Hübel, Clinic I of Internal Medicine, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany; E: kai.huebel@uk-koeln.de

Support: This review article was developed following a satellite workshop presented at the 3rd International Congress on Controversies in Stem Cell Transplantation and Cellular Therapies, which was organised by Sanofi-Genzyme. The publication of this article was supported by Sanofi-Genzyme, who were given the opportunity to review the article for scientific accuracy before submission. Any resulting changes were made at the author’s discretion.
In terms of transplantation, a number of Phase II studies have established a correlation between CD34+ dose and outcome in terms of progression-free survival (PFS) and overall survival (OS). Most clinical centres regard 2.5–4 x 10^6 CD34+ cells/kg body weight as an adequate cell number for autologous HSCT and 2.0 x 10^6 CD34+ cells/kg as the absolute minimum; this is based on a substantial body of clinical data. However, a minority of experts recommend increasing this threshold. Some studies suggest that doses exceeding 5 x 10^6 cells/kg are necessary for optimal engraftment and to reduce febrile complications and antibiotic use after transplantation. A 2000 literature review concluded that a dosage of ≥8 x 10^6 CD34+ cells/kg is optimal, and correlated cell dose to platelet recovery, but this has been disputed. In addition, high levels of circulating CD34+ cells have been associated with better outcomes in MM and NHL. The reported improvement in outcomes may be due to decreases in non-relapse mortality from improved haematologic reconstitution and lower rates of infection.

Conversely, some studies have concluded that high cell doses are not correlated with improved outcomes. A study of patients with MM and NHL found that cell dose did not affect OS at one year. A cohort study (n=80) demonstrated that high dose CD34+ cells were not associated with lower blood component consumption after HSCT. In a retrospective study, patients (n=350) who mobilised high numbers of CD34+ cells had improved outcomes in autologous HSCT for NHL and HL (see Figure 1). However, a similar study design (n=39) of patients with MM or Waldenström macroglobulinemia (WM) found no correlation between survival and number of mobilised CD34+ cells.

In summary, there are insufficient data to conclude that high cell numbers are necessary in autologous HSCT. The optimum dose has not been comprehensively evaluated in prospective studies, most of which are registry-based and retrospective.

What is the outcome of mobilisation?

Stem cell collection requires mobilisation of the HSCs, which aims to obtain as many HSCs of the best possible quality, in the first mobilisation attempt, and preferably a single leukapheresis session. Failure to mobilise a sufficient number of CD34+ cells may result in ineligibility for transplantation and subsequent relapse or the need for multiple leukapheresis sessions, adding to the cost and inconvenience to the patient. Ultimately, a bone marrow harvest may be needed.

Patients undergoing autologous HSCT differ in their ability to mobilise cells. HSC mobilisation may be affected by: age, ethnicity, type and dose of cytokines used, the patient’s diagnosis, number and type of previous chemotherapy cycles or radiation, and interval from last chemotherapy cycle. However, these findings are not consistent across all studies and it is difficult to predict how individual patients will respond. Peripheral blood CD34+ cell counts correlate with numbers of CD34+ cells collected. A significant minority of patients receiving standard mobilisation fail to mobilise enough CD34+ cells. In a 2010 study, before the availability of plerixafor, 15% and 18% of patients with MM and NHL, respectively, were considered ‘poor mobilisers’. However, two-thirds of these patients were finally able to receive autologous HSCT (see Figure 2).

Several mobilisation strategies may be employed (see Figure 3). Mobilisation with granulocyte-colony stimulating factor (G-CSF) alone gives a predictable peak CD34+ level within 4–5 days, allowing for reliable apheresis scheduling. Notably, it is also associated with a relatively short window of opportunity for successful leukapheresis of 1–3 days.

Another method to mobilise HSCs involves the administration of chemotherapy, usually a cyclophosphamide-containing regimen that may be given in conjunction with G-CSF. In a 2007 study of 175 lymphoma patients undergoing autologous HSCT, those with successful G-CSF mobilisation had quicker platelet recovery and improved PFS and OS compared with patients who had adequate collection only after chemotherapy mobilisation or those who failed to collect an adequate attempt, and preferably a single leukapheresis session.

Mobilisation with granulocyte-colony stimulating factor (G-CSF) alone gives a predictable peak CD34+ level within 4–5 days, allowing for reliable apheresis scheduling. Notably, it is also associated with a relatively short window of opportunity for successful leukapheresis of 1–3 days.

Figure 1: Overall survival in supermobilisers of CD34+ cells with lymphoid malignancies

Figure 2: Mobilisation efficiency in patients with multiple myeloma and non-Hodgkin lymphoma

PB = peripheral blood. Reproduced from Wuchter, 2010 under the Creative Commons Attribution-NonCommercial-No Derivatives License.
than chemotherapy plus G-CSF. The benefits and limitations of adding chemotherapy are summarised in Table 1. A 1997 study (n=40) found that chemotherapy with high-dose cyclophosphamide before autologous HSCT increased toxicity without positively impacting long-term outcomes in MM. However, other studies have demonstrated enhanced HSC collection after chemomobilisation. Furthermore, one study suggested that the use of chemotherapy may minimise tumour contamination of the HSC product. Chemotherapy can, however, impair future mobilisations and make the timing of the circulating CD34+ cell peak less predictable, so patients may require apheresis at the weekend. A retrospective analysis of 1,834 patients who underwent stem cell transplantation from November 1995 to October 2006, found that those receiving G-CSF plus plerixafor had the lowest failure rates (p=0.03). NHL patients remobilised with G-CSF who waited >25 days before remobilisation had lower CD34+ cell yield than those who waited ≤16 days (p=0.023). Plerixafor ‘on demand’ after chemotherapy plus G-CSF is an effective first-line mobilisation strategy with myeloma and lymphoma with delayed haematopoietic recovery and <10/μL CD34+ cells, but the timing of administration and criteria for patient selection remain to be established. A retrospective study (n=66) found that plerixafor/G-CSF and cyclophosphamide/G-CSF for upfront mobilisation of CD34+ cells yielded similar numbers of cells collected, costs of mobilisation, and clinical outcomes. In addition, plerixafor/G-CSF mobilisation was associated with predictable days of collection, no weekend apheresis procedures and no unscheduled hospital admissions.

The timing of leukapheresis after plerixafor injection is important in very poor mobilisers if the cell yield is less than one-third of the individual collection goal, to avoid the need for multiple leukapheresis sessions. It is generally considered that not more than three consecutive leukapheresis sessions should be performed for collecting one transplant. An algorithm based on a single centre database is shown in Figure 4.

A 2007 study (n=66) found that plerixafor/G-CSF and cyclophosphamide/G-CSF for upfront mobilisation of CD34+ cells yielded similar numbers of cells collected, costs of mobilisation, and clinical outcomes. In addition, plerixafor/G-CSF mobilisation was associated with predictable days of collection, no weekend apheresis procedures and no unscheduled hospital admissions.

The timing of leukapheresis after plerixafor injection is important in very poor mobilisers: The recommended timing for plerixafor administration is between 6 and 11 hours before leukapheresis, but this approach has been logistically difficult. In clinical practice, the interval may depend on whether treatment was given on an inpatient or outpatient basis. Studies have compared the efficacy at different time intervals. In a good mobiliser the interval between plerixafor injection and leukapheresis may be reduced for poor mobilisers who will only be collected after apheresis failure.

Table 1: Mobilisation with G-CSF and chemotherapy compared with G-CSF alone

<table>
<thead>
<tr>
<th>Benefits</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Higher HSC yields compared to G-CSF alone</td>
<td>Less predictable peak CD34+ (10–18 days)</td>
</tr>
<tr>
<td>Fewer apheresis sessions as compared to G-CSF alone</td>
<td>Greater toxicity compared to G-CSF alone</td>
</tr>
<tr>
<td>Anticancer activity of cyclophosphamide</td>
<td>No improvement on failure rates</td>
</tr>
<tr>
<td>May incur bone marrow damage, and impaired future mobilisations</td>
<td>Need to hospitalise patients over 1–3 days for chemotherapy administration</td>
</tr>
<tr>
<td>Need for daily blood tests to monitor CD34+ mobilisation</td>
<td>Higher costs compared to G-CSF monotherapy</td>
</tr>
</tbody>
</table>

G-CSF = granulocyte-colony stimulating factor; HSC = haematopoietic stem cell.
Aiming to perform all leukapheresis sessions on weekdays, when laboratory staff are available, can limit the number of patients receiving apheresis because of the limited availability of apheresis machines. The optimal days for planning the initial leukapheresis session are Monday to Wednesday, allowing the opportunity to successfully complete the collection process by Friday, even if one or two additional apheresis sessions are required.

Another potentially useful approach is optimising the leukapheresis strategy. Terumo BCT recently introduced a new system for mononuclear cell (MNC) collection that allows for the continuous collection of MNCs, unlike the original system (Spectra Optia®, Terumo BCT, Colorado, US), which included a chamber for two-step cell separation. However, a comparative study (n=150) of the two apheresis systems in regard to specific performance parameters found that both systems were equally efficient in collecting CD34+ cells. In addition, a formula to predict collection of CD34+ cells/kg has been validated. Using this formula, clinicians can adjust leukapheresis duration and blood volume processed, to achieve the patient’s collection target in only one apheresis without spending longer on the machine than necessary. This will theoretically allow for individualisation of collection for any donor once the peripheral blood CD34+ cell count and optimal goal of collection were known.

Reproduced from Cheng et al., 2015 under the Creative Commons Attribution-No Commercial license.

The importance of graft composition in HSCT

Until recently, CD34+ stem cell dose has been the accepted measure of graft quality. Attention is now moving towards more detailed aspects of graft composition, such as CD34+ subpopulations. Studies have found lower rates of relapse, defined as the absolute lymphocyte count ≤10 CD34+ cells/μL PB, administration of plerixafor in accordance with European Group for Blood and Marrow Transplantation (EBMT) guidelines. Borderline PMs should be subjected to an evaluation leukapheresis procedure if the individual collection goal is not more than two transplants. The second decision-making step depends on the result of the first leukapheresis procedure. If less than one-third of the individual collection goal can be reached, the administration of plerixafor is recommended. This decision-making process is continued until a sufficient stem cell number has been reached.

The use of plerixafor affects the graft composition: it appears to mobilise more primitive CD34+/CD38- stem cells compared with G-CSF, as well as higher T- and natural killer (NK)- cells. A higher nucleated cell dose has been associated with increased survival and decreased relapse in patients in second remission or beyond. Interestingly, in this study, the number of CD34+ cells did not have any significant influence on the transplant outcome, but the intensity of the preparative regimen was lower in comparison with the conditioning used in the other studies. It should also be noted that these were small studies and their findings are still under debate.

The importance of graft composition in HSCT

Until recently, CD34+ stem cell dose has been the accepted measure of graft quality. Attention is now moving towards more detailed aspects of graft composition, such as CD34+ subpopulations. Studies have found lower rates of relapse, defined as the absolute lymphocyte count ≤10 CD34+ cells/μL PB, administration of plerixafor in accordance with European Group for Blood and Marrow Transplantation (EBMT) guidelines. Borderline PMs should be subjected to an evaluation leukapheresis procedure if the individual collection goal is not more than two transplants. The second decision-making step depends on the result of the first leukapheresis procedure. If less than one-third of the individual collection goal can be reached, the administration of plerixafor is recommended. This decision-making process is continued until a sufficient stem cell number has been reached.

The use of plerixafor affects the graft composition: it appears to mobilise more primitive CD34+/CD38− stem cells compared with G-CSF, as well as higher T- and natural killer (NK)- cells. Further studies are needed to investigate the impact of this on clinical outcomes, in a study (n=58) of patients with B-cell lymphoma or CLL who underwent auto HSCT after myeloablative conditioning, the number of CD34+CD38−/HLA-DR− cell subsets was associated with faster early engraftment but had no effect on long-term outcomes. It has been suggested that the quality of CD34+ cells from low mobilisers may be inferior to that of HSCs from high mobilisers. However, a study found that the proportions of primitive and quiescent CD34+ subsets were comparable across mobilisation groups and concluded that HSC products from low mobilisers are of similar quality to high mobilisers.

Reproduced from Porrata et al., 2014 under the Creative Commons Attribution-No Commercial license.

The importance of graft composition in HSCT

Until recently, CD34+ stem cell dose has been the accepted measure of graft quality. Attention is now moving towards more detailed aspects of graft composition, such as CD34+ subpopulations. Studies have found lower rates of relapse, defined as the absolute lymphocyte count ≤10 CD34+ cells/μL PB, administration of plerixafor in accordance with European Group for Blood and Marrow Transplantation (EBMT) guidelines. Borderline PMs should be subjected to an evaluation leukapheresis procedure if the individual collection goal is not more than two transplants. The second decision-making step depends on the result of the first leukapheresis procedure. If less than one-third of the individual collection goal can be reached, the administration of plerixafor is recommended. This decision-making process is continued until a sufficient stem cell number has been reached.

The use of plerixafor affects the graft composition: it appears to mobilise more primitive CD34+/CD38− stem cells compared with G-CSF, as well as higher T- and natural killer (NK)- cells. Further studies are needed to investigate the impact of this on clinical outcomes, in a study (n=58) of patients with B-cell lymphoma or CLL who underwent auto HSCT after myeloablative conditioning, the number of CD34+CD38−/HLA-DR− cell subsets was associated with faster early engraftment but had no effect on long-term outcomes. It has been suggested that the quality of CD34+ cells from low mobilisers may be inferior to that of HSCs from high mobilisers. However, a study found that the proportions of primitive and quiescent CD34+ subsets were comparable across mobilisation groups and concluded that HSC products from low mobilisers are of similar quality to high mobilisers.

Reproduced from Porrata et al., 2014 under the Creative Commons Attribution-No Commercial license.
An increasing body of evidence suggests that non-CD34+ cells predict early engraftment and better outcomes. Immune recovery is as crucial as hematopoietic reconstitution, and higher – and NK-cells infused within the graft have been correlated with better outcome in autologous transplants. The NK-cell count at day 15 has been associated with enhanced OS and PFS in a study of patients with MM (n=15) and NHL (n=4).36 Dendritic cells have also been identified as predictors of improved survival in autologous HSCT.37 Furthermore, a study (n=65) of autologous HSCT for hematological malignancies found that the number of CD8+ cells in the graft is important for early lymphocyte recovery.38 Again, further studies are required to confirm these findings.

A study (n=190) of NHL patients found that infused peripheral blood autograft absolute lymphocyte count correlated with outcomes at day 15.39 A later study found that the lymphocyte to monocyte ratio in the graft was a key predictor of survival in diffuse large B-cell lymphoma (see Figure S).40

Other factors influencing the mobilisation process

The wishes of the patient are important in choosing mobilisation strategies. Patients often undertake considerable online research and may have strong opinions regarding their treatment. New predictive formulas may reduce uncertainty for the patient, for example telling him or her that there is an 80% chance of achieving their collection target in one session. Using the predictive formula can avoid patients undergoing unnecessarily prolonged procedures. Stem cell mobilisation and collection may take place in an outpatient or an inpatient setting.

Summary and concluding remarks

The variation of study findings with respect to optimal CD34+ cell doses and use of mobilisation agents illustrates the challenges in optimising leukaemogenesis outcomes for HSCT. Many studies to date are not representative of real life situations; most were performed in the 1990s, many were in cancer patients and analysed a variety of disease entities together. Early studies in MM did not use novel induction therapy and few studies compare engraftment kinetics or outcomes in stem cell mobilisation techniques that are currently in use. Prior chemotherapy could also be a confounding factor in comparing patient groups. In a study of autograft lymphocyte to monocyte ratio, patients who had received fewer chemotherapy courses had better prognoses,41 perhaps because they have more treatment-sensitive disease, or due to toxic effects of chemotherapy. Importantly, there are no prospective studies on CD34+ cell doses.

Although a considerable body of evidence suggests that the cell dose influences transplant outcomes in HSCT, the graft composition also plays a role. The importance of graft composition needs to be elucidated and several questions remain. For example, does a higher content of T- and NK-cells achieve a quicker immune recovery, which may prevent infections and enhance anti-disease activity? Does the number of immune cells within the apheresis product correlate with survival following HSCT? The potential impact of cyclophosphamide, one of the most commonly used chemotherapy mobilisation regimens, on graft composition also remains unknown. This agent is known to be lymphotrophic and thus reduces the number of T-cells, NK- and B-cells in the graft. By contrast, plerixafor shows increased mobilisation of T- and NK-cells independently of CD34+ cell yield. More prospective study data are needed for a fuller understanding of engraftment and immunologic regeneration using different mobilisation protocols. Tailoring the dose of the different cell subsets contained in the graft to each individual patient might improve transplant outcomes.

In conclusion, many factors influence outcomes in HSCT. Patient factors may have more effect on overall outcome than graft characteristics. Studies aimed at assessing the importance of any factor would need multivariate analysis of a large number of patients.

How to Find the Optimal Mobilisation Strategy – Impact, Challenges and Solutions

19. Antunes E, Fruhat S, Importance of blood graft characteristics in auto SCT: implications for optimizing mobilization regimens, Bone Marrow Transplant, 2011;46:627–35.
20. Perez-Simon JA, Martini M, Caballero S, et al., Clinical significance of CD34+ cell dose in long term engraftment following autologous peripheral blood stem cell transplantation, Bone Marrow Transplant, 1999;24:1293–98.

42. Tomalty M, Bittin L, Blazar R et al., Difficult stem cell mobilization despite adequate CD34+ cell dose predicts shortened progression free and overall survival after autologous HCT for lymphoma, Bone Marrow Transplant, 2007;39:111-8.

45. Shahghassini F, Blas-Oloyma M, Murphy L et al., Cord blood efficacy and safety in the mobilization of peripheral blood CD34 and plerixafor compared to G-CSF and G-CSF plus plerixafor, Bone Marrow Transplant, 2011;47:15-7.

46. Porf意to LF, Iwado DS, Atrial SA et al., Infused autograft peripheral blood myeloid monocyte ratio and survival in diffuse large B-cell lymphoma, Bone Marrow Transplant, 2014;50:1604-12.

49. Rosenbaum E, Gallegos MA, Perez R et al., A 15-hour dosing schedule for plerixafor in patients is at least as effective as the standard 10-hour interval [51st ASH Annual Meeting and Exposition]. Transfusion, 2009;49:1518-22.

50. Cheng L, Schmitt M, Wuchter F et al., Plerixafor is effective either preemptively or as a rescue strategy in poor stem cell mobilizing patients with multiple myeloma, Transfusion, 2011;51:275-83.

52. Lehner F, Maige L, Rea D et al., A specific time course for CD34+ cells after plerixafor injection in very poor mobilizer patients: impact on the timing of therapy combination and plerixafor administration, Bone Marrow Transplant, 2014;51:1539-44.

57. Rodey GE, Gooley TA, Negrini M et al., Characterization of hematopoietic stem cell subsets from patients with multiple myeloma after mobilization with plerixafor, Cytotherapy, 2011;13:469-64.

58. Frucht P, Weirink MA, Songer T et al., A combination of granulocyte colony-stimulating factor (SCF) and plerixafor mobilizes more primitive peripheral blood progenitor cells than SCF alone in multiple myeloma patients, Cancer, 2009;115:999-1007.

61. Porfteto LF, Iwado DS, Atrial SA et al., Infused autologous peripheral blood CD34+ cell grafts correlate with short term engraftment but have no influence on long-term hematopoietic reconstitution after autologous transplantation, Cytotherapy, 2009;11:999-1007.

64. Porfteto LF, Iwado DS, Atrial SA et al., Infused peripheral blood autograft natural killer cells correlate with absolute lymphocyte count recovery after autologous stem cell transplantation, Cytotherapy, 2009;11:999-1007.

71. Joao C, Porfettto LF, Inwards DI et al., Early lymphocyte recovery following autologous peripheral stem cell transplantation is associated with better survival in younger patients with lymphoproliferative disorders, Hematology, 2006;11:165-70.

72. Gorin NC, Labopin M, Beilin IM et al., Results of genomix hematopoietic stem cell transplantation with reduced intensity conditioning for acute myeloid leukemia: higher doses of stem cells infused benefit patients receiving transplants in second remission or beyond—the acute Leukemia Working Party of the European Cooperative Group for Blood and Marrow Transplantation, J Clin Oncol, 2004;22:3559-64.

73. Saraceni F, Shen Ty N, Oliwen A et al., Mobilized peripheral blood grafts include more than hematopoietic stem cells: the immunological perspective, Bone Marrow Transplant, 2010;45:886-91.