submit to the journals

New Advances in the Chemotherapy of Metastatic Colorectal Cancer

US Oncology Review, 2005;1(1):63-70 DOI: http://doi.org/10.17925/OHR.2006.00.00.1e

Abstract:

Introduction
Colorectal cancer (CRC) is a major public health problem in the US.1 In terms of cancer-related mortality in the US, CRC ranks second only to lung cancer. In 2004, an estimated 147,500 new cases of CRC are expected to occur in the US, and about 57,000 patients will die of the disease.2 Worldwide, nearly 800,000 new cases are diagnosed each year, resulting in approximately 500,000 annual deaths.

Chemotherapy for Advanced CRC
When advanced metastatic disease (stage IV) is diagnosed, the prognosis is poor with five-year survival in the 5% to 8% range. This survival rate has remained essentially unchanged over the past 35–40 years. However, over the past five years, significant advances have been made in the treatment options for this disease, such that dramatic improvements in two-year survival are now being observed. Chemotherapy is generally considered the standard treatment approach for patients with advanced CRC. The three main agents used in the systemic treatment of CRC include a fluoropyrimidine, either 5- fluorouracil (5-FU) or capecitabine, irinotecan, and oxaliplatin. It is now well-established that clinical efficacy is improved with the use of combination therapy, and studies are now in progress to determine the optimal sequencing of these combination regimens.

5-Fluorouracil
5-Fluorouracil (5-FU) is a fluoropyrimidine analog that is inactive in its parent form, and requires metabolic activation to generate the active metabolites responsible for cytotoxicity.The cytotoxic metabolites of 5-FU are incorporated into ribonucleic acid (RNA) and DNA, respectively, and they interfere with the processes of RNA and DNA biosynthesis. In addition, the 5-FU metabolite, FdUMP, is a potent inhibitor of de novo thymidylate synthesis, and inhibition of this process causes an eventual loss of thymidine triphosphate, which is a necessary constituent for DNA synthesis.

For nearly 40 years, 5-FU was the only active chemotherapy available to treat advanced CRC in the first-line setting.4 However, response rates to 5-FU in patients with advanced disease were generally in the 10% to 15% range.To improve the clinical efficacy of 5- FU, the addition of certain biomodulation agents such as the reduced folate leucovorin (LV) and/or a change in the schedule of administration of 5-FU from bolus to continuous infusion were investigated.5,6 While response rates have significantly increased with these maneuvers, overall survival has not been substantively altered.

Capecitabine
Capecitabine is a third-generation oral prodrug of 5-FU that was rationally designed to closely simulate infusional administration of 5-FU.7 It is rapidly and nearly completely absorbed from the intestine and is then activated by a series of three enzymatic steps to generate 5-FU and its cytotoxic metabolites. The unique localization of activating enzymes results in the selective generation of 5-FU in tumor cells after the oral administration of capecitabine, and this fact has been confirmed in preclinical human cancer xenograft models and in patients with CRC.8,9A randomized Phase II study of patients with advanced CRC helped to establish the efficacy and safety of capecitabine and identified the most appropriate monotherapy regimen for evaluation in Phase III trials.10 The optimal regimen was shown to be an oral dose of 1,250mg/m2 twice-daily (bid) for 14 days, followed by a seven-day rest period. This dosing regimen was subsequently used in two randomized Phase III trials comparing capecitabine with bolus 5-FU/LV (Mayo Clinic regimen).11,12 Both Phase III studies showed that capecitabine significantly increased overall response rates in comparison with bolus 5-FU/LV, with equivalent median overall survival and time to tumor progression.Of note, the incidence of diarrhea, stomatitis, nausea, alopecia, and grade 3/4 neutropenia was significantly lower in patients treated with capecitabine, whereas the incidence of hand–foot syndrome was higher.Treatment with capecitabine also resulted in a reduced incidence of hospitalizations for adverse events in comparison with treatment with bolus 5-FU/LV. An integrated analysis revealed that the response rate was significantly greater with capecitabine than with 5-FU/LV (25.7% versus 1 16.7%; P<0.0002), while secondary measures of time-to- tumor progression (TTP) and survival were equivalent.13

References:
  1. American Cancer Society. Cancer Facts & Figures 2003, Atlanta, Ga:American Cancer Society; 2003.
  2. Jemal A, Murray T, Samuels A, Ghafoor A,Ward E and Thun M J,“Cancer statistics 2003”, CA Cancer J. Clin. (2003), 53: pp. 5–26.
  3. Midgley R and Kerr D, “Colorectal cancer”, Lancet (1999), 353: pp. 391–399.
  4. Benson A B I,“Therapy for advanced colorectal cancer”, Semin. Oncol. (1998), 25: pp. 2–11.
  5. Advanced Colorectal Cancer Meta-analysis Project, “Modulation of fluorouracil by leucovorin in patients with advanced colorectal cancer: evidence in terms of response rate”, J. Clin. Oncol. (1992), 10: pp. 896–903.
  6. The Meta-Analysis Group in Cancer, “Efficacy of intravenous continuous infusion of fluorouracil compared with bolus administration in advanced colorectal cancer”, J. Clin. Oncol. (1998), 16: pp. 301–308.
  7. Chu E, Eng C, Abbruzzese J, Marshall J L and Hwang J J, “Efficacy and safety of capecitabine for colorectal cancer”, Am. J.Oncol. Rev. (2003), 2 (Suppl 3): pp. 1–28.
  8. Ishikawa T, Utoh M, Sawada N, et al., “Tumor selective delivery of 5-fluorouracil by capecitabine, a new oral fluoropyrimidine carbamate, in human cancer xenografts”, Biochem. Pharmacol. (1998), 55: pp. 1,091–1,097.
  9. Schüller J, Cassidy J, Dumont E, et al.,“Preferential activation of capecitabine in tumor following oral administration to colorectal cancer patients”, Cancer Chemother. Pharmacol. (2000), 45: pp. 291–297.
  10. van Cutsem E, Findlay M, Osterwalder B, et al., “Capecitabine, an oral fluoropyrimidine carbamate with substantial activity in advanced colorectal cancer: results of a randomized phase II study”, J. Clin. Oncol. (2000), 18: pp. 1,337–1,345.
  11. Hoff P M,Ansari R, Batist G, et al.,“Comparison of oral capecitabine versus intravenous fluorouracil plus leucovorin as first-time treatment in 605 patients with metastatic colorectal cancer: results of a randomized phase III study”, J. Clin. Oncol. (2001), 19: pp. 2,282–2,292.
  12. van Cutsem E,Twelves C, Cassidy J, et al.,“Oral capecitabine compared with intravenous fluorouracil plus leucovorin in patients with metastatic colorectal cancer: results of a large phase III study”, J. Clin. Oncol. (2001), 19: pp. 4,097–4,106.
  13. Twelves C, for the Xeloda Colorectal Cancer Group,“Capecitabine as first-line treatment in colorectal cancer: pooled data from two large, phase III trials”, Eur. J. Cancer (2002), 38 (suppl 2): pp. S15–S20.
  14. Vanhoefer U, Harstrick A, Achterrath W, Cao S, Seeber S and Rustum Y M, “Irinotecan in the treatment of colorectal cancer: clinical overview”, J. Clin. Oncol. (2001), 19: pp. 1,501–1,518.
  15. Chen A Y and Liu L F,“DNA topoisomerases: essential enzymes and lethal targets”, Annu.Rev. Pharmacol.Toxicol. (1994), 34: pp. 191–218.
  16. Cunningham D, Pyrhönen S, James R D, et al.,“Randomised trial of irinotecan plus supportive care versus supportive care alone after fluorouracil failure for patients with metastatic colorectal cancer”, Lancet (1998), 352: pp. 1,413–1,418.
  17. Rougier P, van Cutsem E, Bajetta E, et al., “Randomised trial of irinotecan versus fluorouracil by continuous infusion after fluorouracil failure in patients with metastatic colorectal cancer”, Lancet (1998), 352: pp. 1,407–1,412.
  18. Douillard J Y, Cunningham D, Roth A D, et al.,“Irinotecan combined with fluorouracil compared with fluorouracil alone as firstline treatment for metastatic colorectal cancer: a multicentre randomised trial”, Lancet (2000), 355: pp. 1,041–1,047.
  19. Saltz L B, Cox J V, Blanke C, et al., “Irinotecan plus fluorouracil and leucovorin for metastatic colorectal cancer”, N. Engl. J. Med. (2000), 343: pp. 905–914.
  20. Borner N M, Dietrich D, Popescu R, et al., “A randomized phase II trial of capecitabine (CAP) and two different schedules of irinotecan (IRI) in first-line treatment of metastatic colorectal cancer (MCC)”, Proc.Am. Soc. Clin. Oncol. (2003), 22:Abstract p. 1,068.
  21. Patt Y Z, Lin E, Leibmann J, et al., “Capecitabine (X) plus irinotecan (XELIRI) for first-line treatment for metastatic colorectal cancer (MCRC): final safety findings from a phase II trial”, Proc.Am. Soc. Clin. Oncol. (2004), 23: Abstract p. 1,130.
  22. Maindrault-Goebel F, de Gramont A, Louvet C, et al., “High-dose intensity oxaliplatin added to the simplified bimonthly leucovorin and 5-fluorouracil regimen as second-line therapy for metastatic colorectal cancer (FOLFOX 7)”, Eur. J. Cancer (2001), 37: pp. 1,000–1,005.
  23. Maindrault-Goebel F, Louvet C, André T, et al., “Oxaliplatin added to the simplified bimonthly leucovorin and 5-fluorouracil regimen as second-line therapy for metastatic colorectal cancer (FOLFOX6)”, Eur. J. Cancer (1999), 35: pp. 1,338–1,342.
  24. André T, Louvet C, Raymond E,Tournigand C and de Gramont A,“Bimonthly high-dose leucovorin, 5-fluorouracil infusion and oxaliplatin (FOLFOX3) for metastatic colorectal cancer resistant to the same leucovorin and 5-fluorouracil regimen”, Ann. Oncol. (1998), 9: pp. 1,251–1,253.
  25. Maindrault-Goebel F, de Gramont A, Louvet C, et al.,“Evaluation of oxaliplatin dose intensity in bimonthly leucovorin and 48- hour 5-fluorouracil continuous infusion regiments (FOLFOX) in pretreated metastatic colorectal cancer”, Ann. Oncol. (2000), 11: pp. 1,477–1,483.
  26. Rothenberg M, Oza A M, Bigelow R H, et al., “Superiority of oxaliplatin and fluorouracil-leucovorin compared with either therapy alone in patients with progressive colorectal cancer after irinotecan and fluorouracil-leucovorin: interim results of a phase III trial”, J. Clin. Oncol. (2003), 21: pp. 2,059–2,069.
  27. Rothenberg M L, Oza A M, Burger B, et al.,“Final results of a phase III trial of 5-FU/leucovorin versus oxaliplatin versus the combination in patients with metastatic colorectal cancer following irinotecan, 5-FU, and leucovorin”, Proc. Am. Soc. Clin. Oncol. (2003), 22: Abstract p. 1,011.
  28. de Gramont A, Figer A, Seymour M, et al., “Leucovorin and fluorouracil with or without oxaliplatin as first-line treatment in advanced colorectal cancer”, J. Clin. Oncol. (2000), 18: pp. 2,938–2,947.
  29. Lévi F, Zidani R and Misset J-L, “Randomised multicentre trial of chronotherapy with oxaliplatin, fluorouracil, and folinic acid in metastatic colorectal cancer”, Lancet (1997), 350: pp. 681–686.
  30. Giacchetti S, Perpoint B, Zidani R, et al., “Phase III multicenter randomized trial of oxaliplatin added to chronomodulated fluorouracil-leucovorin as first-line treatment of metastatic colorectal cancer”, J. Clin. Oncol. (2000), 18: pp. 136–147.
  31. Goldberg R M, Sargent D J, Morton R F, et al., “A randomized controlled trial of fluorouracil plus leucovorin, irinotecan, and oxaliplatin combinations in patients with previously untreated metastatic colorectal cancer”, J. Clin. Oncol. (2004), 22: pp. 23–30.
  32. Souglakos J, Mavroudis D, Kakolyris S, et al., “Triplet combination with irinotecan plus oxaliplatin plus continuous-infusion fluorouracil and leucovorin as first-line treatment in metastatic colorectal cancer: a multicenter Phase II trial”, J. Clin. Oncol. (2002), 20: pp. 2,651–2,657.
  33. Falcone A, Masi G, Allegrini G, et al., “Biweekly chemotherapy with oxaliplatin, irinotecan, infusional fluorouracil, and leucovorin: a pilot study in patients with metastatic colorectal cancer”, J. Clin. Oncol. (2002), 20: pp. 4,006–4,014.
  34. Reina J J, Sanchez-Rovira P, Salvador J, et al., “Biweekly administration of oxaliplatin (OX), irinotecan (CPT-11) and 5- fluorouracil as first-line treatment of advanced or metastatic colorectal cancer (CRC)”, Proc.Am. Soc. Clin. Oncol. (2003), 22: Abstract p. 1,284.
  35. Stathoppoulos G P, Rigatos S K, Stathopoulos J G, Xinotroulas J P and Dynan E, “Leucovorin, 5-fluorouracil, irinotecan, oxaliplatin, combination in pretreated advanced colorectal cancer patients”, Proc.Am. Soc. Clin. Oncol. (2003), 22:Abstract p. 1,213.
  36. Mini E, Nobili S, Mazzocchi V, et al., “Biweekly (BW) chemotherapy (CHT) with oxaliplatin (OHP), irinotecan (CPT-11), infusional 5-fluorouracil/folinic acid (FU/FA) in patients (pts) with metastatic colorectal cancer (MCRC) pretreated with CPT- 11- or OHP-based CHT”, Proc.Am. Soc. Clin. Oncol. (2003), 22: Abstract p. 1,503.
  37. Ziras N, Potamianou A, Ginopoulos P, et al., “Gemcitabine plus oxaliplatin (GEMOX) combination chemotherapy (CT) as second-line treatment of colorectal cancer (CRC)”, Proc.Am. Soc. Clin. Oncol. (2003), 22: Abstract p. 1,368.
  38. Atkins J N, Jacobs S,Wieand S, et al., “Pemetrexed and oxaliplatin for first-line treatment of patients with advanced colorectal cancer: A phase II trial of the NSABP foundation research program”, Proc. Am. Soc. Clin. Oncol. (2003), 22; Abstract p. 1,108.
  39. Borner M M, Dietrich D, Stupp R, et al., “Phase II study of capecitabine and oxaliplatin in first- and second-line treatment of advanced or metastatic colorectal cancer”, J. Clin. Oncol. (2002), 20: pp. 1,759–1,766.
  40. Scheithauer W, Kornek G V, Raderer M, et al.,“Randomized multicenter phase II trial of two different schedules of capecitabine plus oxaliplatin as first-line treatment in advanced colorectal cancer”, J. Clin. Oncol. (2003), 21: pp. 1,307–1,312.
  41. van Cutsem E,Twelves C,Tabernero J, et al., “Mature results of a multinational, phase II trial of capecitabine plus oxaliplatin, an effective 1st line option for patients (pts) with metastatic colorectal cancer (MCRC)”, Proc.Am. Soc. Clin. Oncol. (2003), 22: Abstract p. 1,023.
  42. Grothey A, Jordan K, Kellner O, et al.,“Randomized phase II trial of capecitabine plus irinotecan (CapIri) vs capecitabine plus oxaliplatin (CapOx) as first-line therapy of advanced colorectal cancer (ACRC)”, Proc. Am. Soc. Clin. Oncol. (2003), 22: Abstract p. 1,022.
  43. Saltz L, Rubin M, Hochster H, et al.,“Ceutximab (IMC-C225) plus irinotecan is active in CPT-11 refractory colorectal cancer that expresses epidermal growth factor receptor (EGFR)”, Proc.Am. Soc. Clin. Oncol. (2001), 20: Abstract p. 7.
  44. Saltz L B, Meropol N J, Loehrer Jr P J, et al.,“Phase II trial of cetuximab in patients with refractory colorectal cancer that expresses the epidermal growth factor receptor”, J. Clin. Oncol. (2004), 22: pp. 1,201–1,208.
  45. Cunningham D, Humblet Y, Siena S, et al., “A randomized comparison of cetuximab monotherapy and cetuximab combination with irinotecan in irinotecan-refractory metastatic colorectal cancer”, N. Eng. J. Med. (2004), 351: pp. 337–345.
  46. Lenz H-J, Mayer R, Gold P et al., “Activity of cetuximab in patients with colorectal cancer refractory to both irinotecan and oxaliplatin”, Proc.Am. Soc. Clin. Oncol. (2004), 23: Abstract p. 3,510.
  47. Kabbinavar F, Hurwitz H I, Fehrenbacher L, et al., “Phase II randomized trial comparing bevacizumab plus fluorouracil (FU)/leucovorin (LV) with FU/LV alone in patients with metastatic colorectal cancer”, J. Clin. Oncol. (2003), 21: pp. 60–65.
  48. Hurwitz H, Fehrenbacher L, Novotny W, et al.,“Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer”, N. Engl. J. Med. (2004), 350: pp. 2,335–2,342.
  49. Kabbinavar F, Schultz J, McCleod M, et al., “Results of a randomized phase II controlled trial of bevacizumab in combination with 5-fluorouracil and leucovorin as first-line therapy in subjects with metastatic CRC”, Proc.Am. Soc. Clin. Oncol. (2004), 23: Abstract p. 3,516.