submit to the journals

A Review of Sleep Concerns in Pediatric Sickle Cell Disease

Oncology & Hematology Review, 2012;8(1):83–7 DOI: http://doi.org/10.17925/OHR.2012.08.1.83

Abstract:

Children with sickle cell disease (SCD) are at an increased risk of sleep disorders as compared with healthy children, possibly because of disease processes, pain, ethnic minority status, and living in an urban environment. Adequate sleep is an essential component of typical child development, mood-and-affect regulation, and health maintenance, but more research is needed to understand the contribution of sleep to health outcomes in children with SCD. SCD is a chronic disease that can be influenced by environmental, health, and behavioral factors. Understanding the impact of the disease on sleep is important to maximise the quality of life in these children. If SCD causes poor sleep quality, then children may be at risk of a host of developmental and psychosocial problems beyond those caused by the disease. Also, poor sleep may affect the disease course, thus exacerbating symptoms. In this article, prevalent sleep disorders in this population are reviewed, including sleep-disordered breathing, periodic limb movement disorder, restless legs syndrome, and nocturnal enuresis. Also, the contribution of the disease symptoms—such as pain, hypoxemia, and daytime tiredness and fatigue—to disrupted sleep are examined. Finally, the effects of sociodemographic factors, such as poverty and ethnic minority status, are described, as these contextual factors significantly impact sleep across several chronic conditions in pediatric patients. Frequent monitoring for sleep disruptions can be essential to improving health outcomes and quality of life in children with SCD.
Keywords: Sickle cell disease, pediatrics, sleep, sleep-disordered breathing, enuresis, pain, socioeconomic status
Disclosure: The authors have no conflicts of interest to declare.
Received: December 05, 2011 Accepted: January 23, 2012
Correspondence: Lauren C Daniel, PhD, The Children’s Hospital of Philadelphia, 34th Street and Civic Center Blvd, CHOP North 1482, Philadelphia, PA 19104. E: daniell@email.chop.edu

The symptoms of sickle cell disease (SCD) as well as underlying disease processes affect sleep across development, which has important implications for academic and behavioural functioning and overall health outcomes in children and adolescents with SCD. High frequencies of arousals and fragmented sleep related to sleep disorders that are more prevalent in SCD coupled with sleep-interfering disease symptoms (i.e. pain, enuresis, hypoxaemia) result in chronic sleep disruption that can affect development and health outcomes. Rates of sleep-disordered breathing conditions, including obstructive sleep apnoea (OSA),1–3 periodic limb movements (PLMS),4 restless legs syndrome4 and nocturnal enuresis5,6 have been documented in children and adolescents with SCD compared to healthy peers. In children without chronic illness, sleep problems have been linked to behaviour problems,7 poor academic outcomes,8 depression8 and reduced cognitive performance.9 A greater understanding of the interplay between SCD, health outcomes and sociodemographic factors, which are known to affect sleep,10 is necessary to target and improve sleep in children with SCD. This review describes highly prevalent sleep disorders in SCD, disease factors associated with disrupted sleep and the sociodemographic contributions to sleep patterns in children and adolescents with SCD.
Sleep Disorders Prevalent in Paediatric Sickle Cell Disease
Sleep-disordered Breathing
Sleep-disordered breathing is one of the most frequently observed sleep disorders in children with SCD and can significantly impact health and behavioural outcomes in child development. Sleep-disordered breathing refers to the category of disorders of abnormal respiration during the night, either based on ventilation patterns or quantity of ventilation throughout the night.11 OSA is the most common of these disorders, caused by a collapse of the upper airway that restricts airflow and causes hypoxia, disruptions in sleep, hypercapnia (increased carbon dioxide) and reduced neurocognitive performance.11 Sleep-disordered breathing contributes to behavioural problems and learning difficulties (for a review see Owens12), pulmonary hypertension, arterial hypertension, nocturnal enuresis and reductions in growth.13
References:
  1. Kaleyias J, Mostofi N, Grant M, et al., Severity of obstructive sleep apnea in children with sickle cell disease, J Pediatr Hemato Oncol, 2008;30(9):659–65.
  2. Rogers VE, Lewin DS, Winnie GB, Gieger-Brown J, Polysomnographic charateristics of a referred sample of children with sickle cell disease, J Clin Sleep Med, 2010;6(4):374–81.
  3. Samuels MP, Stebbens VA, Davies SC, et al., Sleep related upper airway obstruction and hypoxaemia in sickle cell disease, Arch Dis Child, 1992;67(7):925–9.
  4. Rogers VE, Marcus CL, Jawad AF, et al., Periodic limb movements and disrupted sleep in children with sickle cell disease, Sleep, 2011;34(7):899–908.
  5. Barakat LP, Smith-Whitley K, Schulman S, et al., Nocturnal enuresis in pediatric sickle cell disease, J Dev Behav Pediatr, 2001;22(5):300–5.
  6. Jordan SS, Hilker KA, Stoppelbein L, et al., Nocturnal enuresis and psychosocial problems in pediatric sickle cell disease and sibling controls, J Dev Behav Pediatr, 2005;26(6):404–11.
  7. Lavigne J, Arend R, Rosenbaum D, et al., Sleep and behavior problems among preschoolers, J Dev Behav Pediatr, 1999;20:164–9.
  8. Smaldone A, Honig J, Byrne M, Sleepless in America: inadequate sleep and relationships to health and well-being of our nation's children, Pediatrics, 2007;119(Suppl 1):S29–S37.
  9. Buckhalt J, El-Sheikh M, Keller P, Children's sleep and cognitive functioning: race and socioeconomic status as moderators of effects, Child Dev, 2007;78:213–31.
  10. Boergers J, Koinis-Mitchell D, Sleep and culture in children with medical conditions, J Pediatr Psychol, 2010;35(9):915–26.
  11. National Heart Lung and Blood Institute, National Sleep Disorders Research Plan, Bethesda: National Institutes of Health Publication 2003, No. 03-5209.
  12. Owens JA, Neurocognitive and behavioral impact of sleep disordered breathing in children, Pediatr Pulmonol, 2009;44(5):417–22.
  13. Marcus CL, Sleep-disordered breathing in children, Am J Respir Crit Care Med, 2001;164(1):16–30.
  14. Salles C, Ramos R, Daltro C, et al., Prevalence of obstructive sleep apnea in children and adolescents with sickle cell anemia, J Brasileiro Pneumol, 2009;35(11):1075–83.
  15. Souza LA, Viegas C, Quality of sleep and pulmonary function in clinically stable adolescents with sickle cell anemia, J Brasileiro Pneumol, 2007;33(3):275–81.
  16. Needleman JP, Franco ME, Varlotta L, et al., Mechanisms of nocturnal oxyhemoglobin desaturation in children and adolescents with sickle cell disease, Pediatr Pulmonol, 1999;28(6):418–22.
  17. Wittig RM, Roth T, Keenum AJ, Sarnaik S, Snoring, daytime sleepiness, and sickle cell anemia, Am J Dis Child, 1988;142(6):589.
  18. Maddern BR, Ohene-Frempong K, Reed HT, Beckerman RC, Obstructive sleep apnea syndrome in sickle cell disease, Ann Otol Rhinol Laryngol, 1989;98(3):174–8.
  19. Khatwa U, Kothare SV, Restless legs syndrome and periodic limb movements disorder in the pediatric population, Curr Opin Pulm Med, 2010;16(6):559–67.
  20. Allen RP, Picchietti D, Hening WA, et al., Restless legs syndrome: diagnostic criteria, special considerations, and epidemiology: a report from the restless legs syndrome diagnosis and epidemiology workshop at the National Institutes of Health, Sleep Med, 2003;4(2):101–19.
  21. Kirk V, Bohn S, Periodic limb movements in children: prevalence in a referred population, Sleep 2004;27(2):313–5.
  22. Hedo CC, Aken'Ova YA, Okpala IE, et al., Acute phase reactants and severity of homozygous sickle cell disease, J Intern Med, 1993;233(6):467–70.
  23. Mizuno S, Mihara T, Miyaoka T, et al., CSF iron, ferritin and transferrin levels in restless legs syndrome, J Sleep Res, 2005;14(1):43–7.
  24. Walter PB, Harmatz P, Vichinsky E, Iron metabolism and iron chelation in sickle cell disease, Acta Haematol, 2009;122(2–3):174–83.
  25. Nevéus T, The role of sleep and arousal in nocturnal enuresis, Acta Pædiatrica 2003;92(10):1118–23.
  26. Noll J, Newman A, Gross S, Enuresis and nocturia in sickle cell disease, J Pediatr, 1967;70(6):965–7.
  27. Saxena UH, Scott RB, Ferguson AD, Studies in sickle cell anemia. XXV. Observations on fluid intake and output, J Pediatr, 1966;69(2):220–4.
  28. Figueroa TE, Benaim E, Griggs ST, Hvizdala EV, Enuresis in sickle cell disease, J Urol, 1995;153(6):1987–9.
  29. Onen SH, Onen F, Courpron P, et al., How pain and analgesics disturb sleep, Clin J Pain, 2005;21(5):422–31.
  30. Long AC, Krishnamurthy V, Palermo TM, Sleep disturbances in school-age children with chronic pain, J Pediatr Psychol, 2008;33(3):258–68.
  31. Dampier C, Ely E, Eggleston B, et al., Physical and cognitive– behavioral activities used in the home management of sickle pain: a daily diary study in children and adolescents, Pediatr Blood Cancer, 2004;43(6):674–8.
  32. Shapiro BS, Dinges DF, Orne EC, et al., Home management of sickle cell-related pain in children and adolescents: natural history and impact on school attendance, Pain, 1995;61(1):139–44.
  33. Valrie CR, Gil KM, Redding-Lallinger R, Daeschner C, The influence of pain and stress on sleep in children with sickle cell disease, Child Health Care, 2007;36(4):335–53.
  34. Valrie CR, Gil KM, Redding-Lallinger R, Daeschner C, Brief report: daily mood as a mediator or moderator of the painsleep relationship in children with sickle cell disease, J Pediatr Psychol, 2008;33(3):317–22.
  35. Valrie CR, Gil KM, Redding-Lallinger R, Daeschner C, Brief report: sleep in children with sickle cell disease: an analysis of daily diaries utilizing multilevel models, J Pediatr Psychol, 2007;32(7):857–61.
  36. Palermo TM, Kiska R, Subjective sleep disturbances in adolescents with chronic pain: relationship to daily functioning and quality of life, J Pain, 2005;6(3):201–7.
  37. Lewin DS, Dahl RE, Importance of sleep in the management of pediatric pain, J Dev Behav Pediatr, 1999;20(4):244–52.
  38. Quinn CT, Ahmad N, Clinical correlates of steady-state oxyhaemoglobin desaturation in children who have sickle cell disease, Br J Haematol, 2005;131(1):129–34.
  39. Setty BNY, Stuart MJ, Dampier C, et al., Hypoxaemia in sickle cell disease: biomarker modulation and relevance to pathophysiology, Lancet, 2003;362(9394):1450–5.
  40. Hargrave DR, Wade A, Evans JP, et al., Nocturnal oxygen saturation and painful sickle cell crises in children, Blood, 2003;101(3):846–8.
  41. Kirkham FJ, Hewes DK, Prengier M, et al., Nocturnal hypoxemia and central-nervous-system events in sickle-cell disease, Lancet, 2001;357:1656–9.
  42. Brooks LJ, Koziol SM, Chiarucci KM, et al., Does sleep-disordered breathing contribute to the clinical severity of sickle cell anemia?, J Pediatr Hematol Oncol, 1996;18(2):135–9.
  43. Fallone G, Owens JA, Deane J, Sleepiness in children and adolescents: clinical implications, Sleep Med Rev, 2002;6(4):287–306.
  44. Daniel LC, Grant M, Kothare SV, et al., Sleep patterns in pediatric sickle cell disease, Pediatr Blood Cancer, 2010;55(3):501–7.
  45. Chervin RD, Weatherly RA, Ruzicka DL, et al., Subjective sleepiness and polysomnographic correlates in children scheduled for adenotonsillectomy vs other surgical care, Sleep, 2006;29(4):495–503.
  46. Urschitz MS, Eitner S, Guenther A, et al., Habitual snoring, intermittent hypoxia, and impaired behavior in primary school children, Pediatrics, 2004;114(4):1041–8.
  47. Ibidapo MO, Akinyanju OO, Acute sickle cell syndromes in Nigerian adults, Clin Lab Haematol, 2000;22(3):151–5.
  48. National Heart Lung and Blood Institute, Sickle cell anemia, 2008. Avaialble at: www.nhlbi.nih.gov/health/dci/Diseases/Sca/SCA_WhatIs.html (accessed 9 September 2009).
  49. While AE, Mullen J, While AE, Mullen J, Living with sickle cell disease: the perspective of young people, Br J Nurs, 2004;13(6):320–5.
  50. Ameringer S, Smith WR, Emerging biobehavioral factors of fatigue in sickle cell disease, J Nurs Scholarship, 2011;43(1):22–9.
  51. National Center for Children in Poverty, Who are America's poor children? The official story [Electronic Version], Columbia: Mailman School of Public Health, Columbia University, 2011.
  52. Barbarin O, Whitten, CF, Bond, S, Conner-Warren, R., The social and cultural context of coping with sickle cell disease: II. The role of financial hardship in adjustment to sickle cell disease, J Black Psychol, 1999;25:294–315.
  53. Radcliffe J, Barakat L, Boyd R, Family systems issues in pediatric sickle cell disease. In: Brown RT, Comprehensive Handbook of Childhood Cancer and Sickle Cell Disease: A Biopsychosocial Approach, New York: Oxford, 2006;496–513.
  54. Daniel LC, Grant M, Chawla A, Kothare SV, Sleep patterns in an urban-dwelling minority pediatric population, Vulnerable Child Youth Stud, 2010;5:322–9.
  55. McLaughlin Crabtree V, Beal Korhonen J, Montgomery-Downs HE, et al., Cultural influences on the bedtime behaviors of young children, Sleep Med, 2005;6(4):319–24.
  56. Spilsbury JC, Storfer-Isser A, Drotar D, et al., Sleep behavior in an urban US sample of school-aged children, Arch Pediatr Adolesc Med, 2004;158(10):988–94.
  57. Montgomery-Downs HE, Jones VF, Molfese VJ, et al., Snoring in preschoolers: associations with sleepiness, ethnicity, and learning, Clin Pediatr (Phila), 2003;42(8):719–26.
  58. Crosby B, LeBourgeois MK, Harsh J, et al., Racial differences in reported napping and nocturnal sleep in 2- to 8-year-old children, Pediatrics, 2005;115(Suppl. 1):225–32.
Keywords: Sickle cell disease, pediatrics, sleep, sleep-disordered breathing, enuresis, pain, socioeconomic status