This page contains a Flash digital edition of a book.
Breast Magnetic Resonance Imaging of Multicentric, Multifocal and Bilateral Cancer

in the reports and avoid confusing terms. The enhancement of injuries is classified into three categories: foci, masses and non-mass-like enhancement. In each one, some characteristics that determine the degree of suspicion of malignancy should be analysed.23–26

Two methods can be used to evaluate the enhancement: quantitative and qualitative. Quantitative methods evaluate the enhancement by means of formulae to calculate the rates of enhancement immediately after the administration of contrast. Qualitative methods analyse the morphology of the curves of enhancement. According to this, three types of curve are described. Type I curves consist of a persistent and progressive enhancement. Type II is an initial enhancement that persists and is stable in the delayed phases; this curve is also known as a ‘plateau’ pattern. Type III refers to an initial important enhancement with posterior quick washout23–26

(see Figures 1–3).

To establish the probability of malignancy, integration of the morphological characteristics and kinetic information of the enhancement should be carried out. Imaging features associated with malignancy are similar to those of conventional mammograms – irregular form or margins, spiculated borders; but there are also some that are specific to enhanced MRI – ring enhancement and type II or III curves.23–26

Role of Breast Magnetic Resonance Imaging in the Approach to Clinical Management and Treatment

The approach to breast cancer treatment has changed drastically in recent decades. Improvements in detection of the illness and the knowledge that the majority of treatment failures occur due to visceral or systemic recurrence has enabled a change in breast cancer management. Conservative procedures have increased and the survival rate has improved.

The therapeutic options basically depend on local staging of the primary tumour. In invasive or non-invasive operable carcinomas, the treatment will be based on surgical resection, radiotherapy or both. For systemic breast cancers, chemotherapy, hormone therapy or biologic therapies are recommended. The complete staging and histological characteristics of breast cancer are fundamental for the choice of best treatment. Cancer extent, lymph-node infiltration, hormonal receptor presence, histology of the tumour, HER2/neu gene expression, metastatic disease and the physical condition of the patient will establish the tumour, node, metastasis (TNM) staging and will help in the estimation of risk and prediction of treatment response.1,27,28

It has been demonstrated that breast MRI is the most sensitive additional diagnostic method for diagnosing all tumour types, with sensitivity values ranging between 89 and 100%.3,11,27,29,30

Some authors

report that accurate pre-surgical staging provided by MRI leads to a reduction in recurrence and patients with positive tumour margins;20,31,32 however, other experts advise that there is little high-quality evidence at present to support the routine use of pre-operative MRI,33,34

and in

some cases MRI can be harmful due to false-positives adding unnecessary biopsies and surgery.34,35

A different concern is the level of accuracy for predicting tumour size, which is very important for surgical planning. Mammography and ultrasound often underestimate tumour size, which can result in incomplete resection.36,11

In this area, MRI plays an essential role in EUROPEAN ONCOLOGY & HAEMATOLOGY

surgical planning and therapy choice, because it shows more precisely than mammography the local extent of breast cancer, tumour size, carcinoma location and chest wall infiltration.11,13,27,37–48 Even more importantly, some carcinomas or foci are seen only on breast MRI (see Figure 3).30,31,38,39,41,42,49–51

The majority of breast imaging experts reinforce the concept that the essential value of MRI in the pre-surgical staging of breast cancer is its high sensitivity for the detection of additional foci of cancer that are non-detectable with other imaging techniques, which implies a new therapeutic approach for these patients. The capacity of breast MRI for the detection of additional carcinoma foci and occult carcinomas has been demonstrated in several studies.3,11,13,27,29–31,37–53 minimise potential local failures,42,51

For this reason, to breast MRI is recommended before

partial breast irradiation and should be integrated into the work-up of patients considered for breast-conserving treatment.54

MRI is even

considered for pre-operative evaluation of all newly diagnosed breast cancer patients.27,13,38,43,45,46

improvements to the selection process for breast-conserving surgery, a decrease in the number of surgical procedures required to obtain negative lumpectomy margins and the synchronous detection of contralateral cancers. Nevertheless, the proposal is controversial: Houssami et al. noted that there are no data from prospective randomised trials to support these assertions.33,35

What is confirmed is that in many cases pre-surgical MRI modifies the treatment of breast cancer due to the visualisation of additional foci. Fischer et al.55

The benefits of this proposal theoretically are

scored a change in surgical planning in 66 of 336 women (19.6%) due to the detection in breast MRI of unsuspected multifocal cancer in 8.9%, multicentric cancer in 7.1% and contralateral carcinoma in 4.4% of patients. Tillman et al.37

found a modification of clinical

management in 20% of women with early-stage breast cancer due to the results of breast MRI. The changes were favourable in 11% of patients, with multiple foci detected, better localisation of tumours and characterisation of secondary tumours that were doubtful findings with other techniques. The modification was uncertain in 2%, led to unnecessary biopsies in 5% and was negative in 1% of women who underwent mastectomy when they could have been treated with conservative surgery. Martinez et al.48

refer to the detection

of additional foci of cancer in 20%, which led to a change in the type of surgery in 14.4% of patients. These changes were lumpectomy to extended resection or quadrantectomy due to multifocal carcinoma, conservative surgery to mastectomy due to a vast multifocal carcinoma or multicentric cancer, or change of unilateral surgery for bilateral intervention due to synchronous bilateral carcinoma, all of them detected in pre-surgical MRI.

Sardanelli recommends that patients with a potentially higher anticipated benefit from pre-operative MRI can be identified as those with mammographically dense breasts, with unilateral multifocal/multicentric cancer or a synchronous bilateral cancer already diagnosed at mammography and sonography, with a lobular invasive cancer, at high risk of breast cancer, with a cancer that shows a discrepancy in size of >1cm between mammography and sonography, or under consideration for partial breast irradiation. More limited evidence exists in favour of MRI for evaluating candidates for total skin-sparing mastectomy or for patients with

Regarding the utility of MRI for screening in high-risk patients, MRI is especially indicated in cases of heterogeneous or extremely dense breasts due to the limitations of mammography in this group of patients.3,29,52,53


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92