This page contains a Flash digital edition of a book.
Coagulation Disorders


in eight paediatric patients. The findings of the reliability study of the HJHS version 1.0 indicated that the reliability of this tool was excellent, with a very high interobserver reliability co-efficient of 0.83 and a test–re-test co-efficient of 0.89.8,45


In 2005, a manual and a supporting


HJHS instructional video were produced in order for non-IPSG evaluators to reliably make use of the HJHS. Another reliability study on the HJHS was performed in November 2009 in China.47


Four


physiotherapists from four Chinese haemophilia treatment centres examined eight boys six to 17 years of age with haemophilia A on two consecutive days using the HJHS version 2.1. The study subjects presented with variable degrees of joint damage. The overall reliability was excellent and similar to the findings of the initial reliability study of the HJHS, with an interobserver co-efficient of 0.90 and a test–re-test co-efficient of 0.91.


In 2006–2007, a two-year multicentre validation study of the HJHS was carried out.48,49


This study was undertaken to establish whether the HJHS could accurately measure joint status in patients with mild, moderate and severe haemophilia A or B. The validity and sensitivity of the original WFH scale were compared in parallel. Two hundred and twenty-six patients (mean age 10.8 years) from five centres (Stockholm, Utrecht, Denver, Montreal and Toronto) with mild (17%), moderate (15%) and severe (68%) haemophilia were included in this study. The six-joint HJHS was found to correlate highly with the WFH scale; however, the HJHS was 97% more accurate than the WFH scale in distinguishing among mild, moderate and severe disease, even if the majority of the severe patients were receiving prophylaxis therapy (T=5.80; p=0.06). The median (interquartile range [IQR]) HJHS for severe haemophilia subjects was six (11), for moderate four (eight) and for mild three (eight). The HJHS was also 74% more efficient than the WFH scale at differentiating individuals treated with prophylaxis from those who rarely bled and were never treated with prophylaxis (T=7.32; p=0.007). The median (IQR) HJHS for subjects treated with prophylaxis was six (11), and for those never treated with prophylaxis three (eight). When considering only those subjects with severe haemophilia, the HJHS was 63% more efficient than the WFH scale at differentiating patients treated with primary prophylaxis (median HJHS 5.0) from those treated with secondary prophylaxis (median HJHS 9.0) as well as from those treated on demand (median HSHS 11.5) (T=19.5; p=0.00006). Based on the results of the validation study of the HJHS,48


in 2008 the


HJHS version 2.0 was developed by removing or modifying redundant or less sensitive items. Other changes included an alteration in the score for joint pain, while the scores for axial alignment, joint instability and gait were removed.


Utility of the Haemophilia Joint Health Score in Different Haemophilia Populations Measurement of musculoskeletal conditions by applying standardised physical joint assessment tools such as the HJHS is critically important in the continuous surveillance of individuals with haemophilia, especially in children. Data are important for describing the signs of chronic changes related to recurrent joint haemorrhage over time to evaluate and compare the efficacy of various treatment principles.19,29


Since the HJHS is quite a new international instrument for the assessment of joints in children with haemophilia, and was specifically designed to be more sensitive to mild disease in intensively treated boys, the published data quantifying musculoskeletal damage in haemophilia patients using the HJHS instrument come from several studies with patient cohorts who were typically treated with


78


prophylaxis (see Table 1). The HJHS reliability study reported on eight boys on prophylaxis treatment with mild to moderate or severe clinical signs of joint damage and a mean HJHS of 15, ranging from 3.5 to 35 on days one and 14 and from 2 to 27.5 on day two (out of maximum of 148 in the HJHS version 1.0).8


The health status of the joints of children with haemophilia was also assessed using the HJHS version 1.0 in a study by Engelbert et al.50


Raw


scores of the HJHS in 47 Dutch children with haemophilia (21 boys with severe haemophilia receiving factor replacement prophylaxis, seven boys with moderate haemophilia and 19 with mild haemophilia receiving on-demand treatment) showed that these patients had no or minimal joint impairment (raw scores between zero and six).


Joint evaluation using the HJHS was also performed in a comparative study by Christoforidis et al.51


This study involved 26 patients


with haemophilia A and a mean decimal age of 12.08 years (standard deviation [SD] 4.44). Seventeen patients had severe haemophilia A (residual factor activity <1%) and nine had moderate haemophilia A. The mean HJHS for moderate haemophilia was 4.83 (SD 5.27, range 0–15), and for severe haemophilia was 8.27 (SD 6.11, range 0–23; p=0.24).


The utility of the HJHS in assessing the health status of the joints was also tested on 20 Chinese children with haemophilia (age five to 17 years, haemophilia A/B: 18/2; severe/moderate/unknown: 5/13/2).52 The HJHS score ranged from one to 35 (mean 13.1, median 12, SD 9.03). The investigators stated that the score was significantly higher in older than in younger children, but it was not specified exactly from which age the score was noticed to be higher. The utility of the HJHS was also tested in patients with haemophilia that do not receive preventative treatment. The first report using the HJHS in assessing health status of the joints in patients with the treatment on-demand, sporadic or none of the treatment, comes from 20 Chinese haemophilia children (age 5–17; haemophilia A/B: 18/2; severe/ moderate/unknown: 5/13/2).52


The HJHS score ranged from one to 35


(mean 13.1, median 12, SD 9.03). Investigators of the latter report stated that the score was significantly higher in older than in younger children, but it was not specified exactly from which age the score was noticed to be higher.


The first study, characterising musculoskeletal damage in severe haemophilia using the HJHS tool in boys treated exclusively by on-demand treatment practices, indicated new scores53


The mean


total HJHS in the study cohort (n=20) was 24.5, with a range from five to 50. There was a higher total as well as a higher six-joint HJHS in patients with severe haemophilia and treatment on demand compared with all above-mentioned studies in which the HJHS instrument was used. Overall, 50% of the patients in this study had an HJHS of 25 or higher. Furthermore, the study investigated the progression of haemophilic arthropathy during childhood and puberty, with a particular focus on the age at which remarkable changes occurred, based on the HJHS. The data indicated that a worsening of the HJHS score was noticed with increasing age and that >50% (eight of 13) of the patients ≥10 years of age presented with values higher than 30 (p=0.0002). The comparison of the mean total HJHS between the two age groups resulted in the detection of significant differences between patients under 10 years of age and older patients, showing that the most risky period and most aggravating development of haemophilic joint damage starts from 10 years of age.


EUROPEAN ONCOLOGY & HAEMATOLOGY


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92