This page contains a Flash digital edition of a book.
Joint Scoring using the Haemophilia Joint Health Score System The above results were supported by researchers from the UK.54 In 39

boys with severe haemophilia (mean age 10 years, range four to 18) who were receiving primary prophylaxis at 25–40IU/kg at least twice weekly for haemophilia B and three times weekly for haemophilia A, the HJHS ranged between zero and 22, with a tendency to increase progressively with age. Mean values ranged from one in boys four to six years of age to four in boys 14–18 years of age (p=0.08). The HJHS was less than eight in all boys eight years of age and under.


The HJHS provides a new clinical measure of joint structure and function in children four to 18 years of age.55

It was created to provide

a reliable international measure for quantifying joint damage in children with haemophilia. As seen from the above-mentioned studies, the results of the HJHS have been proved to be highly reliable.8,47 Furthermore, the HJHS was also validated by the International Haemophilia Prophylaxis Study Group.49

The findings reported in

these studies should be considered in the light of possible limitations since the physiotherapists participating in the studies were highly experienced and personally involved in the development of the HJHS. On the other hand, the HJHS has now been taught in workshops worldwide and appears to be easily adopted, even by physiotherapists with limited experience in haemophilia.49

The results of the studies published to date indicate that the new joint assessment tool enables the detection of subtle and early signs of joint damage in intensively treated boys, and also illustrates the differences among patients with mild, moderate and severe haemophilia based on HJHS. This was demonstrated mainly in the studied subjects with severe haemophilia on prophylactic treatment in countries where factor concentrates were widely available. It is a reasonable group to study since the HJHS was designed specifically to be sensitive for mild joint changes in patients receiving prophylaxis. However, the application of the HJHS tool in a study of patients with severe haemophilia who were exclusively receiving treatment on demand demonstrated that the HJHS is also a useful and effective tool in evaluating musculoskeletal outcome following an on-demand- based treatment approach in patients with existing joint damage. This

1. Klukowska A, Czyrny Z, Laguna P, et al., Correlation between clinical, radiological and ultrasonographical image of knee joints in children with haemophilia, Haemophilia, 2001;7:286–92.

2. Lafeber FP, Miossec P, Valentino LA, Physiopathology of haemophilic arthropathy, Haemophilia, 2008;14(Suppl. 4):3–9.

3. Pergantou H, Matsinos G, Papadopoulos A, et al., Comparative study of validity of clinical, X-ray and magnetic resonance imaging scores in evaluation and management of haemophilic arthropathy in children, Haemophilia, 2006;12:241–7.

4. Liesner RJ, Khair K, Hann IM, The impact of prophyactic treatment on children with severe haemophilia, Br J Haematol, 1996;92:973–8.

5. Ljung R, Prophylactic therapy in haemophilia, Blood Rev, 2009;23:267–74.

6. Mannucci PM, Tuddenham EG, The hemophilias – from royal genes to gene therapy, N Engl J Med, 2001;344:1773–9.

7. Hilgartner MW, Current treatment of hemophilic arthropathy, Curr Opin Pediatr, 2002;14:46–9.

8. Hilliard P, Funk S, Zourikian N, et al., Hemophilia joint health score reliability study, Haemophilia, 2006;12:518–25.

9. Rodriguez-Merchan EC, Effects of hemophilia on articulations of children and adults, Clin Orthop Relat Res, 1996;328:7–13.

10. Gilbert MS, Musculoskeletal complications of haemophilia: the joint, Haemophilia, 2000;6(Suppl. 1):34–7.

11. Su Y, Wong WY, Lail A, et al., Long-term major joint outcomes in young adults with haemophilia: interim data from the HGDS, Haemophilia, 2007;13:387–90.

12. Blanchette VS, Manco-Johnson M, Santagostino E, Ljung R, Optimizing factor prophylaxis for the haemophilia population: where do we stand?, Haemophilia, 2004;10(Suppl. 4):97–104.

13. Pipe SW, Valentino LA, Optimizing outcomes for patients with severe haemophilia A, Haemophilia, 2007;13 (Suppl. 4):1–16.

14. Carcao MD, Aledort L, Prophylactic factor replacement in

Joint abnormalities were minimal on examination using the HJHS in very young children – even those receiving on-demand treatment. This observation could lead to the erroneous assumption that episodic therapy in young children with haemophilia is somehow effective. Furthermore, the HJHS was found to increase progressively with age even in boys with severe haemophilia who were receiving prophylaxis.54

This observation supports the usefulness of the HJHS in clinical practice to monitor joint status in children receiving prophylaxis.


In this era of prophylaxis, a joint evaluation system that is capable of detecting early and subtle changes in joint health and function is of paramount importance. The HJHS is a sensitive, reliable and valid tool; however, it needs further evaluation in different patient populations and in centres that were not involved in its design to assess its applicability and usefulness in clinical practice and research. Furthermore, a case–control comparative study of clinical outcomes using the HJHS in paediatric severe haemophilia patients treated with prophylaxis compared with those managed by on-demand treatment would be valuable to extend our understanding of the HJHS in normal and damaged joints. n

hemophilia, Blood Rev, 2004;18:101–13.

15. Ljung R, Petrini P, Nilsson IM, Diagnostic symptoms of severe and moderate haemophilia A and B. A survey of 140 cases, Acta Paediatr Scand, 1990;79:196–200.

16. Rodriguez-Merchan EC, Pathogenesis, early diagnosis, and prophylaxis for chronic hemophilic synovitis, Clin Orthop Relat Res, 1997;343:6–11.

17. Manco-Johnson MJ, Pettersson H, Petrini P, et al., Physical therapy and imaging outcome measures in a haemophilia population treated with factor prophylaxis: current status and future directions, Haemophilia, 2004;10(Suppl. 4):88–93.

18. Mancuso ME, Graca L, Auerswald G, Santagostino E, Haemophilia care in children – benefits of early prophylaxis for inhibitor prevention, Haemophilia, 2009;15(Suppl. 1):8–14.

19. Roosendaal G, Jansen NW, Schutgens R, Lafeber FP, Haemophilic arthropathy: the importance of the earliest haemarthroses and consequences for treatment, Haemophilia, 2008;14(Suppl. 6):4–10.

20. Hoots WK, Rodriguez N, Boggio L, Valentino LA, Pathogenesis of haemophilic synovitis: clinical aspects, Haemophilia, 2007;13(Suppl. 3):4–9.

21. Roosendaal G, Lafeber FP, Blood-induced joint damage in hemophilia, Semin Thromb Hemost, 2003;29:37–42.

22. Valentino LA, Hakobyan N, Rodriguez N, Hoots WK, Pathogenesis of haemophilic synovitis: experimental studies on blood-induced joint damage, Haemophilia, 2007;13:10–3.

23. Valentino LA, Hakobyan N, Enockson C, Blood-induced joint disease: the confluence of dysregulated oncogenes, inflammatory signals, and angiogenic cues, Semin Hematol, 2008;45(Suppl. 1):S50–7.

24. Hooiveld MJ, Roosendaal G, Vianen ME, et al., Immature articular cartilage is more susceptible to blood-induced damage than mature articular cartilage: an in vivo animal study, Arthritis Rheum, 2003;48:396–403.

25. Lofqvist T, Nilsson IM, Berntorp E, Pettersson H, Haemophilia prophylaxis in young patients—a long-term follow-up, J Intern Med, 1997;241:395–400.

26. Manco-Johnson MJ, Abshire TC, Shapiro AD, et al., Prophylaxis versus episodic treatment to prevent joint disease in boys with severe hemophilia, N Engl J Med, 2007;357:535–44.

27. Kreuz W, Escuriola Ettingshausen C, Funk M, et al., Prevention of joint damage in hemophilic children with early prophylaxis, Orthopade, 1999;28:341–6.

28. Lundin B, Ljung R, Pettersson H, MRI scores of ankle joints in children with haemophilia – comparison with clinical data, Haemophilia, 2005;11:116–22.

29. Nilsson IM, Berntorp E, Lofqvist T, Pettersson H, Twenty-five years’ experience of prophylactic treatment in severe haemophilia A and B, J Intern Med, 1992;232:25–32.

30. Roosendaal G, van Rinsum AC, Vianen ME, et al., Haemophilic arthropathy resembles degenerative rather than inflammatory joint disease, Histopathology, 1999; 34:144–53.

31. Gilbert MS, Prophylaxis: musculoskeletal evaluation, Semin Hematol, 1993;30(Suppl. 2):3–6.

32. Fischer K, van der Bom JG, Mauser-Bunschoten EP, et al., The effects of postponing prophylactic treatment on long- term outcome in patients with severe hemophilia, Blood, 2002;99:2337–41.

33. van den Berg HM, Fischer K, Mauser-Bunschoten EP, et al., Long-term outcome of individualized prophylactic treatment of children with severe haemophilia, Br J Haematol, 2001;112:561–5.

34. Aznar JA, Magallon M, Querol F, et al., The orthopaedic status of severe haemophiliacs in Spain, Haemophilia, 2000;6:170–6.

35. Manco-Johnson MJ, Nuss R, Funk S, Murphy J, Joint evaluation instruments for children and adults with haemophilia, Haemophilia, 2000;6:649–57.


confirmed that joint damage develops slowly, over decades. The HJHS increased as a sign of progressing haemophilic arthropathy, which seemed to occur from the age of 10 onwards.

Findings based on the HJHS also suggested that the HJHS tool may be sensitive to the progression of joint disease with age in haemophilia. An HJHS utility study in episodically treated boys with severe haemophilia53

shows that the new instrument might be equally appropriate for screening children on prophylactic treatment as well as those using on-demand regimens. The findings from these studies showed that scores were higher in patients using treatment on demand compared with prophylaxis. However, in order to understand the influence of different treatment regimens or management as determined by the HJHS, studies with higher numbers of patients are required. It remains to be seen how the HJHS should be interpreted in different treatment populations with haemophilia.

Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92