Get Adobe Flash player
Breast Cancer 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 26 Sardanelli F, Giuseppetti GM, Panizza P, et al., (2004) Sensitivity of MRI versus mammography for detecting foci of multifocal, multicentric breast cancer in Fatty and dense breasts using the whole-breast pathologic examination as a gold standard, AJR Am J Roentgenol, 183:1149–1157. Leach MO, Boggis CR, Dixon AK, et al., Screening with magnetic resonance imaging and mammography of a UK population at high familial risk of breast cancer: a prospective multicentre cohort study (MARIBS), Lancet, 2005;365:1769–78. Kuhl CK, Schrading S, Leutner CC, et al., Mammography, breast ultrasound, and magnetic resonance imaging for surveillance of women at high familial risk for breast cancer, J Clin Oncol, 2005;23:8469–76. Kuhl CK, Current status of breast MR imaging. Part 2. Clinical applications, Radiology, 2007;244(3):672–91. Knopp MV, Weiss E, Sinn HP, et al., Pathophysiologic basis of contrast enhancement in breast tumors, J Magn Reson Imaging, 1999;10:26T0–66. Kuhl CK, Mielcareck P, Klaschik S, et al., Dynamic breast MR imaging: are signal intensity time course data useful for differential diagnosis of enhancing lesions?, Radiology, 1999;211(1):101–10 Peters NH, Borel Rinkes IH, Zuithoff NP, et al., Meta-analysis of MR imaging in the diagnosis of breast lesions, Radiology, 2008;246:116–24. Medeiros LR, Duarte CS, Rosa DD, et al., Accuracy of magnetic resonance in suspicious breast lesions: a systematic quantitative review and meta-analysis, Breast Cancer Res Treat, 2011;126:273–85. Elsamaloty H, Elzawawi MS, Mohammad S, Herial N, Increasing accuracy of detection of breast cancer with 3-T MRI, AJR Am J Roentgenol, 2009;192:1142–8. Chen X, Li WL, Zhang YL, et al., Meta-analysis of quantitative diffusion-weighted MR imaging in the differential diagnosis of breast lesions, BMC Cancer, 2010;10:693. Woodhams R, Matsunaga K, Kan S, et al., ADC mapping of 44. 45. 46. 47. 48. 49. 50. 51. 52. benign and malignant breast tumors, Magn Reson Med Sci, 2005;4:35–42. Bogner W, Gruber S, Pinker K, et al., Diffusion-weighted MR for differentiation of breast lesions at 3.0 T: how does selection of diffusion protocols affect diagnosis?, Radiology, 2009;253:341–51. Partridge SC, McKinnon GC, Henry RG, Hylton NM, Menstrual cycle variation of apparent diffusion coefficients measured in the normal breast using MRI, J Magn Reson Imaging, 2001;14:433–8. Partridge SC, Demartini WB, Kurland BF, et al., Quantitative diffusion-weighted imaging as an adjunct to conventional breast MRI for improved positive predictive value, AJR Am J Roentgenol, 2009;193:1716–22. Costantini M, Belli P, Rinaldi P, et al., Diffusion-weighted imaging in breast cancer: relationship between apparent diffusion coefficient and tumour aggressiveness, Clin Radiol, 2010;65:1005–12. Choi SY, Chang YW, Park HJ, et al., Correlation of the apparent diffusion coefficiency values on diffusion-weighted imaging with prognostic factors for breast cancer, Br J Radiol, 2012;85:e474–e479. Martincich L, Deantoni V, Bertotto I, et al., Correlations between diffusion-weighted imaging and breast cancer biomarkers, Eur Radiol, 2012;22:1519–28. Youk JH, Son EJ, Chung J, et al., Triple-negative invasive breast cancer on dynamic contrast-enhanced and diffusion- weighted MR imaging: comparison with other breast cancer subtypes, Eur Radiol, 2012;22:1724–34. Jeh SK, Kim SH, Kim HS, et al., Correlation of the apparent diffusion coefficient value and dynamic magnetic resonance imaging findings with prognostic factors in invasive ductal carcinoma, J Magn Reson Imaging, 2011;33:102–9. Kim SH, Cha ES, Kim HS, et al., Diffusion-weighted imaging of breast cancer: correlation of the apparent diffusion coefficient value with prognostic factors, J Magn Reson Imaging, 2009;30:615–20. 53. 54. 55. 56. 57. 58. 59. 60. 61. 62. 63. Razek AA, Gaballa G, Denewer A, Nada N, Invasive ductal carcinoma: correlation of apparent diffusion coefficient value with pathological prognostic factors, NMR Biomed, 2010;23:619–23. Meisamy S, Bolan PJ, Baker EH, et al., Adding in vivo quantitative 1H MR spectroscopy to improve diagnostic accuracy of breast MR imaging: preliminary results of observer performance study at 4.0 T, Radiology, 2005;236: 465–75. Huang W, Fisher PR, Dulaimy K, et al., Detection of breast malignancy: diagnostic MR protocol for improved specificity, Radiology, 2004;232:585–91. Tozaki M, Proton MR spectroscopy of the breast, Breast Cancer, 2008;15(3):218–23. Cao MD, Giskeodegard GF, Bathen TF, et al., Prognostic value of metabolic response in breast cancer patients receiving neoadjuvant chemotherapy, BMC Cancer, 2012;12:39. Liberman M, Sampalis F, Mulder DS, Sampalis JS, Breast cancer diagnosis by scintimammography: a meta-analysis and review of the literature, Breast Cancer Res Treat, 2003;80(1):115–26. Khalkhali I, Villanueva-Meyer J, Edell SL, et al., Diagnostic accuracy of 99mTc-sestamibi breast imaging: multicenter trial results, J Nucl Med, 2000;41(12):1973–9. Benard F, Turcotte E, Imaging in breast cancer: Single-photon computed tomography and positron-emission tomography, Breast Cancer Res, 2005;7(4):153–62. Williams MB, Judy PG, Gunn S, Majewski S, Dual-modality breast tomosynthesis, Radiology, 2010;255(1):191–8. Pramanik M, Ku G, Li C, Wang LV, Design and evaluation of a novel breast cancer detection system combining both thermoacoustic (TA) and photoacoustic (PA) tomography, Med Phys, 2008;35(6):2218–23. Zhou C, Choe R, Shah N, et al., Diffuse optical monitoring of blood flow and oxygenation in human breast cancer during early stages of neoadjuvant chemotherapy, J Biomed Opt, 2007;12(5):051903. Eur op ean On c olog y & H a e matolog y