The Epidemiology of Childhood Cancers

Richard JQ McNally

Director, Northern Region Young Persons’ Malignant Disease Registry, Institute of Health and Society, Newcastle University

Abstract

In this article, the recent epidemiological literature on childhood cancer is reviewed. This includes findings from descriptive, case-control and cohort studies. The aetiology of most childhood cancers is unclear. Both genetic and environmental factors are likely to contribute. Increasing incidence, findings of clustering and seasonality in the incidence of certain cancers support a role for environmental agents in aetiology. The evidence concerning putative risk factors is considered and suggests that the aetiology is likely to be multifactorial and involve a number of different agents. These include infections, ionising radiation, certain chemical exposures, parental smoking, parental alcohol consumption and hair dyes. Conversely, breastfeeding and certain dietary supplements may convey protection. Recent findings regarding electromagnetic fields suggest that this factor is not likely to have a major role in aetiology.

Keywords

Aetiology, childhood cancer, descriptive epidemiology, incidence, trends, space–time clustering, spatial clustering, seasonality, environment

In this article, the epidemiology and aetiology of childhood cancer are reviewed. The aetiology of childhood cancer is not clear. Both genetic predisposition and environmental agents are likely to be involved. There is a vast amount of literature on the subject, and PubMed (www.ncbi.nlm.nih.gov/PubMed) has been utilised to find key references. This review also synthesises and updates findings from articles that have been discussed in previously published reviews.1–4

Descriptive Epidemiology

Studies of descriptive epidemiology are important for providing clues to aetiology. The main findings are summarised in Table 1.

Incidence

Childhood leukaemia comprises three main sub-types: acute lymphoblastic leukaemia (ALL), acute non-lymphocytic leukaemia (ANLL) and chronic myeloid leukaemia (CML). Childhood leukaemia is dominated by ALL, whereas CML is rare in this age group.

There is a marked variation in the incidence of ALL between countries, with a general trend for the incidence to be lower in less affluent populations and higher in more affluent populations. An incidence peak of ALL is found in more affluent populations in those one to four years of age and mainly comprises cases of the precursor B-cell subtype.1–4 This pattern is consistent with three recent aetiological hypotheses related to infections.1–4 Earlier exposure to infections may provide early priming of the immune system and consequently greater protection. In more affluent populations there is a general tendency for delay in exposure to infections compared with less affluent populations. The geographical patterning of ANLL is less clear.1–4

In contrast to leukaemia, the incidence of Hodgkin’s lymphoma (HL) is higher in less affluent populations. Burkitt lymphoma (BL) is associated with the Epstein-Barr virus (EBV) and is prevalent in certain malaria-endemic parts of sub-Saharan Africa and Papua New Guinea. Other types of non-Hodgkin’s lymphoma (NHL) do not show clear geographical patterns.1,3

Central nervous system (CNS) tumours display the highest incidence in North America, Europe, Australia, New Zealand, Israel and Japan and the lowest incidence in Africa. Sympathetic nervous system tumours have the highest rates in Europe, North America, Australia and Japan and are very rare in Africa. Retinoblastoma has the highest rates in Africa and South America. Wilms’ tumour has the highest incidence in Africans and African-Americans. The highest incidence of osteosarcoma occurs in US African-Americans, Italy, Brazil, Germany and Spain, whereas the highest incidence of Ewing sarcoma is found among white Caucasian populations. The highest incidence of soft-tissue sarcoma is found in Africa, France, the US and Israeli Jews. The incidence of germ cell and gonadal tumours displays heterogeneity between countries, with the highest rates in certain Pacific communities. Hepatic tumours and carcinomas are rare in children.1–5

The incidence of hepatic tumours is related to the prevalence of exposure to hepatitis viruses.6,7 Caution should be exercised when making geographical comparisons between the reported incidence
Paediatric Oncology

Table 1: Summary of Key Findings from Descriptive Studies

<table>
<thead>
<tr>
<th>Incidence</th>
<th>Higher incidence of leukaemia, CNS tumours and sympathetic nervous system tumours in more affluent populations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Higher incidence of lymphomas (especially HL), Wilms’ tumour and retinoblastoma in less affluent populations</td>
</tr>
</tbody>
</table>

Trends

- Increases for leukaemia, attributable to precursor B-cell ALL in the childhood peak
- Increases for CNS tumours, sympathetic nervous system tumours, hepatic tumours, germ cell and gonadal tumours

Space–time Clustering

- Observed for leukaemia, HL, NHL, CNS tumours, soft-tissue sarcoma, osteosarcoma and Wilms’ tumours

Spatial Clustering

- Observed for leukaemia, soft-tissue sarcoma and Wilms’ tumour

Seasonality

- Observed for leukaemia, HL, BL, CNS tumours, rhabdomyosarcoma and hepatoblastoma

ALL = acute lymphoblastic leukaemia; **HL** = Burkitt lymphoma; **CNS** = central nervous system; **HL** = Hodgkin’s lymphoma; **NHL** = non-Hodgkin’s lymphoma.

rates. Data quality, completeness of ascertainment and methods of diagnosis may all play a role. This might at least partly explain some of the disparities. For example, some of the heterogeneity in incidence of CNS tumours may be due to differences in methods of diagnosis, such as the availability of magnetic resonance imaging. Geographical variations in incidence may also result from differences in possible competing risks of early death from infectious diseases (before potential diagnosis of cancer). In developing countries, such competing risks are likely to be much greater than in resource-rich countries.

Trends

Recent reports have found marked increases in the incidence of specific childhood cancers. Increases in the incidence of precursor B-cell ALL are consistent with an increasing tendency for less opportunity for early exposure to infections in more affluent societies. There have been recent increases in the incidence of lymphomas, especially HL. Increases have also been reported for CNS tumours, which cannot be explained as diagnostic artefact. Increases in the incidence of sympathetic nervous system tumours, hepatic tumours and germ cell and gonadal tumours have been reported from a number of more affluent countries. Increases for retinoblastoma have been reported from Africa and India and may be linked with the increased prevalence of HIV infection. Increases in thyroid cancer have been reported from Belarus during the period following the Chernobyl nuclear accident. It is possible that some of the apparent increases in incidence may be due to the improved efficiency of cancer registration, changes in methods of diagnosis and reduction in competing risks of dying from other causes.

Space–time Clustering

Space–time clustering is observed when excess numbers of childhood cancer cases occur within highly localised geographical areas for very limited periods of time and these excesses are not attributable to general excesses in those areas or at those periods. Statistically significant space–time clustering among cases of childhood leukaemia (especially cases of ALL occurring at one to four years of age) has been observed in a number of studies from Europe, Australia and the US. Also, significant space–time clustering has been found for childhood solid tumours, including HL, NHL, CNS tumours, soft-tissue sarcomas, osteosarcoma and Wilms’ tumours. In addition, one study found cross-space–time clustering between cases of leukaemia and CNS tumours.

The positive space–time clustering found for leukaemia is consistent with current hypotheses relating to infections. Space–time clustering for lymphomas is consistent with a directly transforming infection. Putative agents include EBV, hepatitis C, human herpes virus 8 (HHV8), HIV and Helicobacter pylori. The finding of space–time clustering for CNS tumours is also consistent with an infectious aetiology, as has been suggested by other epidemiological studies.

Spatial Clustering

Spatial clustering is seen when excess numbers of cases of childhood cancer occur within highly localised geographical areas for a sustained temporal period. These excesses are widespread and not limited to one small area.

A number of recent studies from Europe, Hong Kong and New Zealand have found spatial clustering among cases of childhood leukaemia. Other studies have not found spatial clustering of childhood leukaemia.

Recent studies from the UK have also found spatial clustering among certain solid tumours, namely soft-tissue sarcoma and Wilms’ tumour.

Spatial clustering for childhood leukaemia is consistent with an infectious aetiology, with persistent occurrence in areas of high or unusual population mixing.

Clustering of soft-tissue sarcoma may be linked with infections or another environmental agent. However, clustering of Wilms’ tumours may arise from other spatially heterogeneous environmental exposures, including hydrocarbons, lead, boron and pesticides.

Seasonality

Seasonal patterning in incidence has been reported for a number of childhood cancers, including leukaemia, HL, CNS tumours, rhabdomyosarcoma and hepatoblastoma. The presence of seasonality is consistent with an environmental aetiology and the possible involvement of seasonally variable environmental agents such as infections and pesticides.

Genetic Risk Factors

Overall, known genetic risk factors account for only a small proportion of all childhood cancer cases. However, certain genetic syndromes are linked with a higher risk of specific childhood cancers. For leukaemia these include Down’s syndrome, neurofibromatosis type 1, ataxia telangiectasia and Fanconi anaemia. For CNS tumours these include neurofibromatosis types 1 and 2, tuberous sclerosis, Gorlin syndrome and Turcot syndrome. For Wilms’ tumour these include Denys-Drash,
Exposures. This is undoubtedly due to a restriction in use of background ionising radiation.

Recent studies, including a pooled analysis (of nine studies of childhood leukaemia) and a meta-analysis (of 13 studies of childhood leukaemia) and a meta-analysis (of 13 studies of childhood leukaemia), found increased risks of childhood leukaemia and CNS tumours associated with estimated residential magnetic field exposures of at least 0.4 micro-Tesla. A recent review suggested that extremely strong low-frequency magnetic fields (>100 micro-Tesla) may interact with other chemical and physical environmental agents and thereby enhance carcinogenic effects.

Other studies have shown no associations with lower levels of residential exposure. Some studies have shown an increased risk of childhood leukaemia associated with living close to an overhead power line, but these studies may be prone to high levels of exposure misclassification.

Pesticides and Fungicides

Exposure of a child or parent (via occupational exposure) to pesticides has been linked with an increased risk of a number of childhood cancers, including leukaemia, lymphoma, CNS tumours, neuroblastoma and Wilms’ tumour.

Factors Associated with Increased Risk

Parental alcohol consumption (leukaemia, CNS tumours)

Parental smoking (leukaemia, NHL, CNS tumours, hepatoblastoma)

Parental alcohol consumption (leukaemia, CNS tumours)

Vitamins, especially vitamin K (leukaemia, lymphoma)

Contaminated drinking water (leukaemia, astrocytoma)

Hair dyes (CNS tumours)

High birth weight (ALL, astrocytoma, Wilms’ tumour, germ cell tumours)

Low birth weight (hepatoblastoma)

Delayed exposure to infections (leukaemia)

Direct exposure to infections (HL, CNS tumours, bone tumours)

Factors Associated with Decreased Risk

Breastfeeding (leukaemia, HL, neuroblastoma, Wilms’ tumour)

Diet including fresh fruit and vegetables (leukaemia)

Folate supplements (leukaemia)

Iron supplements (precursor B-cell ALL)

Allergic diseases (leukaemia, NHL, Still’s disease)

Table 2: Summary of Major Findings from Environmental Studies

<table>
<thead>
<tr>
<th>Factors Associated with Increased Risk</th>
<th>Factors Associated with Decreased Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ionising radiation (very limited evidence for leukaemia and thyroid cancer)</td>
<td>Breastfeeding (leukaemia, HL, neuroblastoma, Wilms’ tumour)</td>
</tr>
<tr>
<td>Electromagnetic fields (leukaemia and CNS tumours, but only for exposures ≥0.4 micro-Tesla)</td>
<td>Diet including fresh fruit and vegetables (leukaemia)</td>
</tr>
<tr>
<td>Pesticides (leukaemia, lymphoma, CNS tumours, neuroblastoma, Wilms’ tumour)</td>
<td>Folate supplements (leukaemia)</td>
</tr>
<tr>
<td>Solvents, benzene and other hydrocarbons (leukaemia, HL, CNS tumours)</td>
<td>Iron supplements (precursor B-cell ALL)</td>
</tr>
<tr>
<td>Parental smoking (leukaemia, NHL, CNS tumours, hepatoblastoma)</td>
<td>Allergic diseases (leukaemia, NHL, Still’s disease)</td>
</tr>
<tr>
<td>Parental alcohol consumption (leukaemia, CNS tumours)</td>
<td></td>
</tr>
</tbody>
</table>
Paediatric Oncology

an increased risk associated with interaction between parental alcohol consumption and certain genetic polymorphisms. An increased risk of CNS tumours has been associated with paternal use of alcohol prior to conception. An increased risk of neuroblastoma has been linked with maternal alcohol consumption during pregnancy.

Viral and Bacterial Infections

An increased risk of childhood leukaemia has been consistently linked with greater affluence and unusual population mixing. Conversely, lower risk has been associated with immunisation and early day care attendance. Although there is inconsistency between studies of social contact, the time of occurrence of early infectious exposures may be an important factor. Specific agents that have been linked with a higher risk of childhood leukaemia include Mycoplasma pneumoniae, Helicobacter pylori, EBV and adenovirus.

An increased risk of HL has been linked with early measles infection. Early infectious exposures (in utero or around the time of birth) have been associated with a higher risk of the child developing a CNS tumour. Exposure of both the mother and the child to farm animals (indicating greater opportunity for exposure to infections) has also been shown to lead to an increased risk of a CNS tumour.

Childhood infections and day care attendance provide protection for neuroblastoma. An increased risk of childhood bone tumours has been associated with frequent change of residence, mumps, living on a farm and parental occupations involving social mixing.

Conclusions

Increasing incidence and findings of clustering and seasonality in the incidence of certain cancers (including leukaemia and CNS tumours) suggest a role for environmental agents in aetiology. The evidence concerning putative risk factors suggests that the aetiology is multifactorial. Both genetic predisposition and a number of environmental agents are likely to be involved. These include infections, ionising radiation, certain chemical exposures, parental smoking, parental alcohol consumption and hair dyes. Conversely, breastfeeding and certain dietary supplements may convey protection. Recent findings concerning electromagnetic fields suggest that this factor is not likely to play a major role in aetiology. Future research should investigate putative mechanisms and evaluate the combined effect of different environmental agents.
